Residential Subdivision The Gardens - Stage 4 Site Classification

Nos. 688 to 730 Medowie Road, Medowie

NEW19P-0143G-AA 9 September 2022

GEOTECHNICAL I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING

9 September 2022

McCloy Project Management Pty Ltd Suite 2, Ground Floor, 317 Hunter Street NEWCASTLE NSW 2300

Attention: Mr Bryson Cox

Dear Sir,

RE: RESIDENTIAL SUBDIVISION – THE GARDENS – STAGE 4 Nos. 688 TO 730 MEDOWIE ROAD, MEDOWIE SITE CLASSIFICATION (LOTS 401 TO 420)

Please find enclosed our geotechnical report for Stage 4 of "The Gardens" residential subdivision, located at Nos. 688 to 730 Medowie Road, Medowie.

The report provides site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs and Footings*', for Stage 4 (Lots 401 to 420), following completion of site regrade works.

If you have any questions regarding this report, please do not hesitate to contact Ben Bunting, Shannon Kelly, or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Jason Lee Principal Geotechnical Engineer

Table of Contents:

1.0		Introduction1
2.0		Desktop Study1
3.0		Field Work 1
4.0		Site Description2
	4.1	Site Regrade Works2
	4.2	Surface Conditions3
	4.3	Subsurface Conditions5
5.0		Laboratory Testing
6.0		Site Classification to AS2870-20119
7.0		Limitations11

Attachments:

- Figure AA1: Site Plan and Approximate Test Locations
- Appendix A: Engineering Logs of Boreholes
- Appendix B: Results of Laboratory Testing
- Appendix C: CSIRO Sheet BTF 18 Foundation Maintenance and Footing Performance

1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this geotechnical report on behalf of McCloy Development Management Pty Ltd (McCloy), for Stage 4 of 'The Gardens' residential subdivision, located at Nos. 688 to 730 Medowie Road, Medowie.

Based on the brief and sales plan provided by McCloy, Stage 4 is understood to include 20 residential allotments (Lots 401 to 420).

The scope of work for the geotechnical investigation included providing site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs and Footings*', for Stage 4 following completion of site regrade works which included controlled filling of Lots 407 to 414.

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

2.0 Desktop Study

The scope of work has included a review of the following reports completed by Qualtest:

- Geotechnical Assessment, 'Proposed Residential Subdivision, Medowie Gardens, Medowie Road, Medowie, (Report Reference: NEW19P-0143-AA, dated 27 November 2019);
- Site Classification, 'Residential Subdivision, The Gardens Stage 1', (Report Reference: NEW19P-00143-AC, dated 1 July 2020);
- Site Classification, 'Residential Subdivision, The Gardens Stage 3', (Report Reference: NEW19P-00143F-AA, dated 19 May 2022); and,
- Level 1 Site Re-grade Assessment Report, 'The Gardens Subdivision Stage 4, Medowie Road, Medowie', (Report Reference: NEW21P-0009D-AB, dated 8 September 2022).

This report includes a summary of selected results from the previous reports where applicable.

3.0 Field Work

Field work investigations were carried out on 22 August 2022, comprising of:

- Excavation of eleven (11 no.) boreholes (BH401 to BH411) using a 2.7 tonne excavator with a 300mm diameter auger, to depths of 2.00m;
- Undisturbed samples (U50 tubes) were taken for subsequent laboratory testing; and,
- Boreholes were backfilled with the excavation spoil and compacted using the excavator auger and tracks.

Investigations were carried out by an experienced Geotechnical Engineer from Qualtest who located the boreholes, carried out the testing and sampling, produced field logs of the boreholes, and made observations of the site surface conditions.

Approximate borehole locations are shown on the attached Figure AA1.

Engineering logs of the boreholes are presented in Appendix A.

4.0 Site Description

4.1 Site Regrade Works

Initial Site Re-grade Works – Performed During Stage 3 Bulk Earthworks

Following an initial site visit, stripping assessment and recommendations performed on 14 and 17 January 2022 (Qualtest ref. NEW21P-0009C-SR03, dated 02/02/22), initial site re-grading works were conducted between 17 January 2022 and 21 March 2022.

The initial re-grade works included filling within all or portions of Lots 410 to 412, along with filling within the westbound lane of Macadamia Circuit between approx. Ch. 1250m and 1310m. This filling was performed during the Stage 3 bulk earthworks, and was associated with the backfill of an existing farm dam.

Subsequent Site Re-grade Works – Performed During Stage 4 Bulk Earthworks

Following a subsequent site visit, stripping assessment and recommendations performed on 11 April 2022 (Qualtest ref. NEW21P-0009D-SR01, dated 19/04/22), additional site re-grading works were conducted between 19 April 2022 and 17 May 2022.

Re-grade works included filling within all or portions of Lots 411 to 414 and portions of Lot 508. Filling within these lots consisted predominantly of the placement of remaining required fill to bring lots to finished design levels. Filling was also performed within a small isolated area covering portions of Lots 407 to 409, which was associated with the replacement of existing uncontrolled fill material, understood to have been placed previously on the site.

Filling Method Performed

Prior to filling, re-grade areas were stripped of topsoil and unsuitable material to expose the suitable natural foundation profile. Preparation works were then performed, which consisted of tyning, re-conditioning and re-compaction of the stripped surface, prior to filling with approved site fill to design finish levels

Filling was performed using site stockpiled material won from excavations cut from around the site. The fill material could generally be described as mixtures of Residual (CI-CH) Sandy CLAY, medium to high plasticity, red / brown / grey in colour, with fine to coarse grained Sand.

The approximate depth of fill placed ranged in the order of 0.1m to about 5.7m, with the deepest areas being within the footprint of the previous farm dam, predominately located within Lots 411 to 413.

The approximate maximum depth of fill placed was in the order of:

- Lot 407 to 409 1.8m;
- Lot 410 5.0m;
- Lot 411 to 413 5.7m; and,
- Lot 414 0.6m.

The fill was compacted in maximum lifts of 0.3m thickness. Any unsuitable or deleterious material within the fill was removed by hand or mechanical means prior to final compaction of the material.

As the geotechnical testing authority engaged for the project, Qualtest state that the filling performed for the re-grade areas within Stage 4 (as noted above and shown approximately on Figure AA1) was carried out to Level 1 criteria as defined in Clause 8.2 – Section 8 of AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".

The recommendations of this report are based on our understanding of lot regrade works from the Level 1 fill supervision by Qualtest, and placement of low reactivity topsoil material such that total depth of topsoil and uncontrolled fill does not exceed 0.4m. Qualtest should be informed without delay if additional earthworks are known to have been carried out.

4.2 Surface Conditions

The site is located east of Medowie Road, Medowie. The site comprises Stage 4 of the Medowie Gardens residential subdivision at Nos. 688 to 730 Medowie Rd, Medowie. The site comprises 20 proposed residential allotments and associated road pavements. The site area of the proposed subdivision is shown on Figure AA1.

Stage 4 is bounded to the north by existing residential allotments, and to the south, east, and west by future or existing stages of The Gardens subdivision (Stage 1, future Stage 5, and Stage 3, respectively).

On the day of the investigation, inter-allotment drainage systems had been installed, and pavements had been constructed (but not sealed), and the site was judged to be reasonably well drained.

Photographs of the site taken on the day of the site investigations are shown below.

Photograph 1: From eastern boundary of Lot 401, facing west.

Photograph 2: From eastern boundary of Lot 401, facing north.

Photograph 3: From near western boundary of Lot 405, facing north.

Photograph 4: From near western boundary of Lot 405, facing east.

Photograph 5: From near north-eastern corner of Lot 410, facing south.

Photograph 6: From near north-eastern corner of Lot 410, facing west.

Photograph 7: From near north-western corner of Lot 411, facing east.

Photograph 8: From near north-western corner of Lot 411, facing south.

Photograph 9: From near eastern boundary of Lot 415, facing east.

Photograph 11: From near eastern boundary of Lot 418, facing west.

Photograph 10: From near eastern boundary of Lot 415, facing north.

Photograph 12: From near eastern boundary of Lot 418, facing north.

4.3 Subsurface Conditions

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet 9231 indicates the site to be underlain by the Permian Aged Tomago Coal Measures, which are characterised by Siltstone, Sandstone, Coal, Tuff and Claystone rock types.

Table 1 presents a summary of the typical soil types encountered on site during the field investigations, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the above geotechnical units at the borehole locations.

Unit	Soil Type	Description
1A	FILL – TOPSOIL	Sandy CLAY – low to medium plasticity, dark grey-brown, fine to coarse grained (mostly fine grained) sand, trace fine to medium grained angular gravel, with some sticks.
1B	UNCONTROLLED FILL	Not encountered during current investigations.
1C	CONTROLLED FILL	Sandy CLAY / CLAY – medium to high plasticity, red-brown, pale grey to white, brown to pale orange-brown, grey-brown and dark brown, fine to coarse grained (mostly fine to medium grained) sand, with some fine to medium grained rounded and angular to sub-angular gravel in places.
2	TOPSOIL	Sandy CLAY – low plasticity, dark grey-brown, fine grained sand, with some sticks, root affected in places.
3	COLLUVIUM / SLOPEWASH	Not encountered during current investigations.
4	RESIDUAL SOIL	CLAY / Sandy CLAY – medium to high plasticity, pale brown, pale orange-brown, red-brown, with trace pale grey to white in places, fine to coarse grained (mostly fine grained) sand, trace fine grained angular to sub-rounded gravel in places.
		Gravelly CLAY – medium plasticity, red-brown with some pale grey to white, fine to medium grained sub-rounded to sub- angular gravel, with some fine to coarse grained sand.
5	EXTREMELY WEATHERED (XW) ROCK with soil properties	Not encountered within depth of excavation during current investigation.

TABLE 1 – SUMMARY OF GEOTECHNICAL UNITS AND SOIL TYPES

No groundwater was encountered in the boreholes during the limited time that they remained open on the day of the field investigation.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

TABLE 2 – SUMMARY OF GEOTECHNICAL UNITS ENCOUNTERED AT BOREHOLE LOCATIONS	
---	--

Location	Unit 1A FILL – Topsoil	Unit 1B Uncontrolled Fill	Unit 1C Controlled Fill	Unit 2 Topsoil	Unit 3 Colluvium / Slopewash	Unit 4 Residual Soil	Unit 5 XW Rock						
	Depth in metres (m)												
			Current Ir	vestigation									
BH401	-	-	_	0.00 – 0.25	-	0.25 – 2.00	-						
BH402	-	-	-	0.00 – 0.20	-	0.20 - 2.00	-						
BH403	0.00 - 0.30	-	-	-	-	0.30 – 2.00	-						
BH404	0.00 - 0.10	-	0.10 – 1.25	-	-	1.25 – 2.00	-						
BH405	0.00 - 0.35	-	-	-	-	0.35 – 2.00	-						
BH406	0.00 - 0.20	-	0.20 – 2.00	-	-	-	-						
BH407	-	-	0.00 – 2.00	-	-	-	-						
BH408	0.00 - 0.15	-	0.15 – 0.80	-	-	0.80 - 2.00	-						
BH409	-	-	-	0.00 – 0.20	-	0.20 – 2.00	-						
BH410	-	-	-	0.00 – 0.25	-	0.25 – 2.00	-						
BH411	-	-	-	0.00 – 0.25	-	0.25 – 2.00	-						
		Previous Inv	vestigation (NEW19	P-0143F-AA, dated	19 May 2022)								
BH301	-	-	-	0.00 - 0.40	-	0.40 - 2.00	-						
BH302	-	-	-	0.00 - 0.30	0.30 - 0.40	0.40 - 2.00	-						
BH303	-	-	0.00 - 0.40	-	0.40 - 0.50	0.50 - 2.00	-						
BH304	0.00 - 0.20	-	0.20 - 0.55	-	-	0.55 - 2.00	-						

Location	Unit 1A FILL – Topsoil	Unit 1B Uncontrolled Fill	Unit 1C Controlled Fill	Unit 2 Topsoil	Unit 3 Colluvium / Slopewash	Unit 4 Residual Soil	Unit 5 XW Rock					
	Depth in metres (m)											
BH305	0.00 - 0.40	-	0.40 - 1.00	-	-	1.00 - 2.20	_					
		Previous In	vestigation (NEW19	P-0143-AC, dated	l 1 July 2020)							
TP109	-	-	-	0.00 - 0.30	0.30 - 0.80	0.80 - 1.40	1.40 - 2.00					
TP110	-	-	-	0.00 - 0.25	0.25 - 0.80	0.80 - 1.80	1.80 - 2.00					
TP111	-	-	-	0.00 - 0.20	0.20 - 0.50	0.50 - 2.00	-					
		Previous Inves	tigation (NEW19P-0	143-AA, dated 27	November 2019)							
TP04	-	-	-	0.00 - 0.30	0.30 - 0.40	0.40 - 1.95	-					
TP06	-	-	-	0.00 - 0.20	-	0.20 - 1.50^	-					
TP09	-	-	-	0.00 - 0.20	0.20 - 0.70	0.70 - 2.00	-					
TP10	-	-	-	0.00 - 0.25	0.25 - 0.60	0.60 - 1.95	-					
TP11	-	0.00 - 0.10	-	0.10 - 0.30	0.30 - 0.45	0.45 - 1.90^	-					
TP12	-	-	-	0.00 - 0.35	0.35 - 0.45	0.45 - 1.90^	-					
TP16	-	-	-	0.00 - 0.25	0.25 - 0.70	0.70 - 2.00	-					
TP17	_	-	-	0.00 - 0.20	0.20 - 0.70	0.70 - 2.00	_					

5.0 Laboratory Testing

Samples collected during the field investigations were returned to our NATA accredited Newcastle Laboratory for testing which comprised of:

- (12 no.) Shrink / Swell tests; and,
- (2 no.) Atterberg Limits tests.

Two shrink/swell tests were replaced by Atterberg Limits classification tests due to the friable nature of the soils.

Results of the laboratory testing are included in Appendix B, with a summary of the Shrink/Swell and Atterberg Limits test results presented in Table 3 and Table 4 respectively, including selected results from previous investigations where applicable.

Location	Depth (m)	Material Description	Iss (%)								
	Current Investigation										
BH401	1.6										
BH403	0.50 - 0.80	(CI) Sandy CLAY	1.9								
BH404	0.50 - 0.70	(CI) Sandy CLAY	1.0								
BH406	0.30 - 0.50	FILL: (CH) Sandy CLAY / CLAY	1.3								
BH406	1.00 - 1.15	FILL: (CI) Sandy CLAY	1.3								
BH407	0.30 - 0.45	FILL: (CI) Sandy CLAY	1.3								
BH407	1.00 - 1.30	FILL: (CI) Sandy CLAY	1.9								
BH408	0.30 - 0.45	FILL: (CI) Sandy CLAY	1.8								
BH408	0.90 - 1.05	(CI) Sandy CLAY	2.2								
BH409	0.90 - 1.10	(CI) Sandy CLAY	1.2								
BH410	0.50 - 0.65	(CI) Sandy CLAY	2.4								
BH411	0.80 - 1.00	(CI) Sandy CLAY	1.6								
	Previous Investi	igation (NEW19P-0143F-AA, dated 19 May 20)	22)								
BH301	0.60 - 0.75	(CI) CLAY	1.7								
BH302	0.90 - 1.05	(CH) CLAY	2.9								
BH303	0.05 - 0.25	FILL: (CI) Sandy CLAY	1.3								
BH304	0.40 - 0.55	FILL: (CI) Sandy CLAY	0.9								
BH305	0.70 - 0.85	FILL: (CH) Sandy CLAY	1.7								

TABLE 3 – SUMMARY OF SHRINK / SWELL TESTING RESULTS

Location	Depth (m)	Material Description	l _{ss} (%)									
Previous Investigation (NEW19P-0143-AC, dated 1 July 2020)												
TP109	0.80 - 1.00	(CH) CLAY	2.0									
TP110	0.90 - 1.05	(CH) CLAY	1.9									
TP111	0.30 - 0.50	(CI) Sandy CLAY	1.4									
Previous Investigation (NEW19P-0143-AA, dated 27 November 2019)												
TP04	0.60 - 0.80	(CH) CLAY	2.8									
TP06	0.45 - 0.85	(CH) CLAY	1.7									
TP09	0.45 - 0.70	(CL) CLAY	2.2									
TP10	0.30 - 0.55	(CL) CLAY	1.7									
TP11	0.45 - 0.70	(CH) CLAY	1.2									
TP12	0.85 - 1.05	(CH) CLAY	2.4									
TP16	0.50 - 0.70	(CL) CLAY	1.1									
TP17	0.80 - 1.00	(CH) CLAY	1.4									

TABLE 4 – SUMMARY OF ATTERBERG LIMITS TESTING RESULTS

Location	Sample Depth (m)	Material Description	Liquid Limit (%)	Plastic limit (%)	Plasticity Index (%)	Linear Shrinkage (%)
BH402	0.80 - 1.00	(CH) CLAY	69	27	42	17.5
BH405	0.80 - 1.00	(CI) Sandy CLAY	58	25	33	16.0

6.0 Site Classification to AS2870-2011

Based on the results of the field work and laboratory testing, residential lots located within Stage 4 of The Gardens residential subdivision located at Nos. 688 to 730 Medowie Road, Medowie, as shown on Figure AA1, are classified in their current condition in accordance with AS2870-2011 'Residential Slabs and Footings', as shown in Table 5.

Stage	Lot Numbers	Site Classification
	401 to 406, and 416 to 420	м
4	407 to 415	H1

TABLE 5 – SITE CLASSIFICATION TO AS2870-2011

A characteristic free surface movement in the range of 20mm to 40mm is estimated for lots classified as **Class 'M'**.

A characteristic free surface movement in the range of 40mm to 60mm is estimated for lots classified as **Class 'H1'**.

The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement.

If site re-grading works involving cutting or filling are performed after the date of this assessment the classification may change and further advice should be sought.

Final site classification will be dependent on the type of fill and level of supervision carried out. Re-classification of lots should be confirmed by the geotechnical authority at the time of construction following any site re-grade works.

Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the natural clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches;
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;
- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 'Residential Slabs and Footings' is essential, in particular Section 5.6, 'Additional requirements for Classes M, H1, H2 and E sites' including architectural restrictions, plumbing and drainage requirements; and,
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide", a copy of which is attached in Appendix C.

All structural elements on all lots regardless of their site classification should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, or other potentially deleterious material.

If any areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

7.0 Limitations

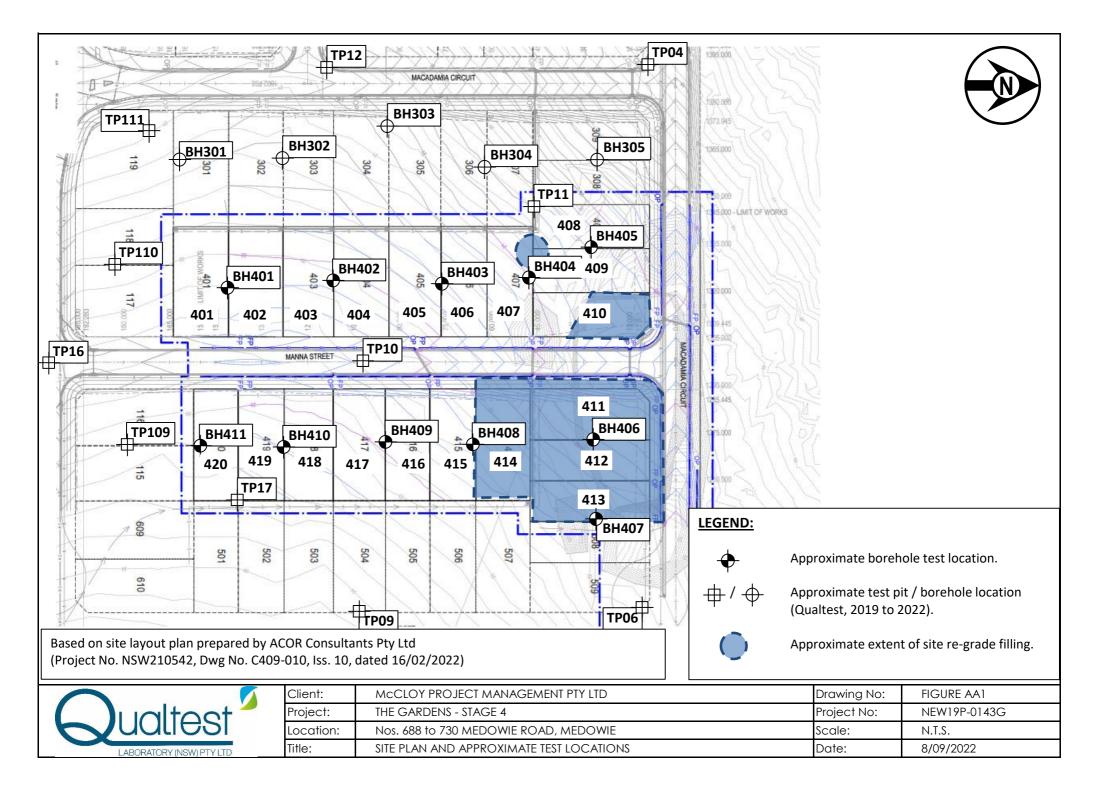
The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete test locations. It should be noted that subsurface conditions between and away from the test locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Ben Edwards, Shannon Kelly or the undersigned.


For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

Esc Le.

Jason Lee Principal Geotechnical Engineer

FIGURE AA1:

Site Plan and Approximate Test Locations

APPENDIX A:

Engineering Logs of Boreholes

LOCATION: MEDOWIE

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH401 1 OF 1

NEW19P-0143G

BB 22/8/22

		YPE: OLE DIAN			EXCA 300 m		OR WITH AUGER SURF DATU	ACE RL: M:								
	Drilling and Sampling						Material description and profile information				Field	d Test				
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component	//particle s	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations			
				-		CL	TOPSOIL: Sandy CLAY - low plasticity, dark grey-brown, fine grained sand, with some si		M~ W				TOPSOIL / POSSIBLE FILL-TOPSOIL			
	Not Encountered		0.50m	0.50m			 CI	Sandy CLAY - medium plasticity, pale brow grained sand.		- ^A		HP	230	RESIDUAL SOIL		
		U50 <u>0.65m</u>		-		CI	Sandy CLAY - medium plasticity, pale orang trace red-brown, fine grained sand, trace fin angular gravel.		~ W		ΗP	250				
AD/T		Not Encountered	Not Encountered				- - 1. <u>0</u> -			CLAY - medium plasticity, red-brown with so orange-brown, with some fine grained sand fine grained angular gravel.			VSt	HP	320	
4				- - 1.5_ -		CI	1.70m		M ~ Wp		HP	380				
				2.0		СН	CLAY - medium to high plasticity, red-brown pale grey to white and pale orange-brown, w fine grained sand. 2.00m	n, trace with some		Н	HP	490				
LEC Wat				-			Hole Terminated at 2.00 m									
	Wat (Dat	er Level e and time sl er Inflow er Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plast Bulk S	n Diame ample onmenta s jar, se Sulfate :	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F Fb F	'ery Soft oft irm atiff 'ery Stiff lard iriable		<2 25 50 10 20 >4	5 - 50) - 100)0 - 200)0 - 400 !00	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit			
	Gi tra De	radational or ansitional stra efinitive or dis rata change		Field Test PID DCP(x-y) HP	Photo Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L D VD) M D	ery Lo bose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%			

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4 LOCATION: MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH402

1 OF 1

NEW19P-0143G

22/8/22

BB

		YPE: OLE DIAN			EXCA 300 m		OR WITH AUGER SURF	FACE RL: JM:					
	Drill	ing and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	TOPSOIL: Sandy CLAY - low plasticity, dar grey-brown, fine grained sand, with some s		M ~ W				TOPSOIL / POSSIBLE FILL-TOPSOIL
				-		CI	Sandy CLAY - medium plasticity, pale brow grained sand.	 /n, fine			HP	210	RESIDUAL SOIL
				0.5			0.40m Sandy CLAY - medium plasticity, pale oran trace red-brown, fine grained sand, trace fin angular gravel.	 ge-brown, ne grained	M > W	VSt	HP	300	
		0.80m		-			0.80m				-		
AD/T	Not Encountered	U50 1.00m		- 1. <u>0</u>		СН	some pale orange-brown, with some fine g sand, trace fine grained angular gravel.	rained 	_	VSt - H	HP	380	
	No			-			pale orange-brown, with some fine grained	sand.			HP	500	
4				- 1. <u>5</u> -		СН	Red-brown, trace pale grey to write.		M ~ Wp	н			
							2.00m				HP	520	
				-			Hole Terminated at 2.00 m						
LEC Wat				-									
	Wat (Dat Wat	er Level e and time sl er Inflow er Outflow	nown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample nment jar, se sulfate	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt N H F	ency /ery Soft Soft Firm Stiff /ery Stiff Hard Friable		<2 25 50 10 20	<u>CS (kPa</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400) <u>Moisture Condition</u> D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
<u></u>	G tra D	anges radational or ansitional stra efinitive or dis rata change		Field Test PID DCP(x-y) HP	<u>ts</u> Photo Dynar	ionisati nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L ME D VE	La D M D	ery Lo bose lediun ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

PAGE: JOB NO:

LOGGED BY:

DATE:

BOREHOLE NO:

BH403

1 OF 1 NEW19P-0143G

BB

	DRILL TYPE: 2.7 TONNE EXCAVATOR WITH AUGER SURFACE RL: BOREHOLE DIAMETER: 300 mm DATUM:												
	Dril	ling and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	FILL-TOPSOIL: Sandy CLAY - low plasticit grey-brown, fine to coarse grained (mostly grained) sand, trace fine to medium graine gravel, with some sticks.	fine	$M\sim w_{\rm P}$				FILL - TOPSOIL
		0.50m		0.5_		CI	Sandy CLAY - medium plasticity, pale brow grained sand.				ΗP	280	RESIDUAL SOIL
		U50 0.80m		-		CI	trace red-brown, fine grained sand, trace fi angular gravel.	ne grained	M > w _p	VSt	HP	350	
Tool AD/T	Not Encountered	0.0011		- 1. <u>0</u>		CI	CLAY - medium plasticity, red-brown with s orange-brown, with some fine grained sand fine grained angular gravel.			VSt - H	HP	410	
00.04 Datgel Lab and In Situ	2			-			<u>1.10m</u> CLAY - medium to high plasticity, red-brow pale grey to white and pale orange-brown, fine grained sand.		$M\sim W_P$		HP	550	
OT LIB 1.1.G.LB Log NON-CORED BOREHOLE TEST PIT NEW19P-0143G-AA DRAFT LOGS GPJ < <drawngfile>> 09/09/2022 10:51 10.02:00.04 DageLlab and In Situ Too</drawngfile>				1. <u>5</u> - -		СН	Red-brown with some pale grey to white, tr orange-brown.	ace pale	M < w _p	Н	HP	580 510	
AFT LOGS.GPJ < <dr< td=""><td></td><td></td><td></td><td>2.0</td><td></td><td></td><td>2.00m Hole Terminated at 2.00 m</td><td></td><td></td><td></td><td></td><td></td><td></td></dr<>				2.0			2.00m Hole Terminated at 2.00 m						
TEST PIT NEW19P-0143G-AA UK				-									
	– (Da – Wa ◀ Wa rata Ch	ter Level te and time sl ter Inflow ter Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS B Fiold Toet	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se sulfate S	Es ter tube sample or CBR testing Il sample aled and chilled on site) soil Sample air expelled, chilled)	S S F F St S VSt V H F Fb F	I /ery Soft Soft Firm Stiff /ery Stiff lard Friable V		<2 25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
QT LIB 1.1.GLB	tr D	ansitional or ansitional stra efinitive or dis trata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L D VD	Lo M De	ose	n Dense	Density Index 15 - 35%

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

BOREHOLE NO: PAGE:

JOB NO:

DATE:

LOGGED BY:

BH404

1 OF 1 NEW19P-0143G

BB

		TYPE: Ole dian			EXCA 300 m		R WITH AUGER SURF	FACE RL: JM:					
	Dril	ling and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
	Not Encountered	0.50m U50 0.70m				CL CH CH	0.10m FILL-TOPSOIL: Sandy CLAY - low plasticit grey-brown, fine to coarse grained (mostly grained) sand, trace fine to medium grained (gravel, with some sticks. FILL: Sandy CLAY - medium to high plastic red-brown, pale grey to white, and brown to orange-brown, fine to coarse grained (mos medium grained) sand, with some fine to m grained angular gravel. 0.80m FILL: Sandy CLAY - medium to high plastic to dark brown with some red-brown and pa orange-brown, fine to coarse grained (mos medium grained) sand, with some fine to m grained angular gravel. 1.25m Gravelly CLAY - medium plasticity, red-brown some pale grey to white, fine to medium grained angular gravel. 1.25m Hole Terminated at 2.00 m	fine d angular / j pale ty fine to ledium	M < Wp	St - VSt		280 150 180 230	FILL - TOPSOIL FILL - CONTROLLED
	Wai (Da - Wai	ter Level te and time sl ter Inflow ter Outflow	nown)	Notes, Sa U₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	i Diame ample f onmenta s jar, se Sulfate \$	Is ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ncy /ery Soft Soft Firm Stiff /ery Stiff lard Friable		<2 25 50 10 20	25 5 - 50 5 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
<u>Stra</u>	G tr D	anges iradational or ansitional stra efinitive or dis irata change		B Field Test PID DCP(x-y) HP	<u>s</u> Photo Dynar	ionisatio nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	riable V L MC D VD	L N D	ery Lo oose ledium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

BOREHOLE NO: PAGE: JOB NO:

LOGGED BY:

DATE:

BH405

1 OF 1 NEW19P-0143G

BB

WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CATION				X			
				GR	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle is	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
					CL	FILL-TOPSOIL: Sandy CLAY - low plasticit grey-brown, fine to coarse grained (mostly grained) sand, trace fine to medium grained gravel, with some sticks. Lens of Clay fill (~50mm thick) at 0.20m. Po natural topsoil underneath. 0.35m Sandy CLAY - medium plasticity, pale brow grained sand.	fine d angular ossible	M < Wp		HP		FILL - TOPSOIL
ountered	U50				СН	<u>0.50m</u> Blasticity, pa Sandy CLAY - medium to high plasticity, pa orange-brown, trace red-brown, fine graine trace fine grained angular gravel.	 le d sand,	M > Wp	VSt	HP	280	
			- - 1. <u>5</u>			orange-brown, with some fine to coarse gra (mostly fine grained) sand, trace fine graine sub-angular gravel. 1.50m Gravelly CLAY - medium plasticity, red-bro some pale grey to white, fine to medium gr	ained ad 	- -	н	HP	450	
					CI	2.00m Hole Terminated at 2.00 m		Σ	H / Fb			
			-									
(Date Wate Wate	e and time sho er Inflow er Outflow	own)	U₅₀ CBR E ASS B	50mm Bulk sa Enviro (Glass Acid S (Plastic Bulk S	Diame ample f nmenta jar, se ulfate \$ c bag, a	ter tube sample or CBR testing I sample aled and chilled on site) Soil Sample	VS V S S F F St S VSt V H F Fb F	'ery Soft Soft Stiff 'ery Stiff lard Friable		<2 25 50 10 20 >4	25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
	Not Euconnited Wate Wate Cha	ND: Vater Level (Date and time sho Water Inflow Water Outflow Changes Gradational or	U50 1.00m VD: Water Level (Date and time shown) Water Outflow Changes Gradational or transitional strata	Build of the shown) Notes, Sar VD: Notes, Sar Water Level CBR (Date and time shown) CBR Water Unflow ASS Water Outflow B Gradational or B Field Test	US0 1.00m 1.00m 1.0 1.00m 1.0 1.0 1.0 1.5 0 0 0 0 0 0 0 0 0 0 0 0 0	US0 1.00m 1.00m 1.00m 1.0 CH CH CH CH CH CH CH CH CH CH	0.80m US0 1.0 CH 0.80m 1.0 CH CH 0.00m 1.0 CH CH 0.00m 1.0 CH CH 0.00m 1.0 CH CH 0.00m 1.0 CH CLAY - medium plasticity, red-brown, tiths or ange-brown, titrace fine graine sub-angular gravel. 1.0 CI CLAY - medium plasticity, red-brown with so orange-brown, with some fine to coarse grained) sand, trace fine graine sub-angular gravel. 1.5 CI Gravely CLAY - medium plasticity, red-brown with so orange-brown, with some fine to coarse grained) sand, trace fine graine sub-angular gravel. 1.5 CI Some pale grey to white, fine to medium prasticity, red-brown some pale grey to white, fine to medium gravel, with so coarse grained sand. VD: 2.0 2.00m VD: Votes, Samples and Tests Unit 0 Some Diameter tube sample CBR Bulk sample for CBR testing E Ervironmental sample (Class and time shown) (Class and suple for CBR testing Changes B Bulk Sample Gradutonal or time shown (Class pair sealed and chilled on site) Acter	0.80m 0.80m Sandy CLAY - medium to high plasticity, nale 0.80m 0.50 1.0 0.50 1.0 CH 0.00m 1.0 CH 0.80m 1.0 CH 0.80m 1.0 CH 0.50 1.0 CH 0.80m 1.0 CH 1.5 CH CH 1.5	0.80m 0.80m Sandy CLAY - medium to high plasticity, pale orange-brown, those red-town, fine grained sand, trace fine grained angular gravel. 0.80m 0.50 0.50 1.0 0.50 1.0 1.00m 1.0 1.00m 1.0 1.00m 1.0 0.50 1.0 1.00m 1.0 0.80m 1.0 1.00m 1.0	0.80m 0.90m Sandy CLAY - medium to high plasticity, pale 0.80m 1.0 CH 0.90m 1.0 CH 1.00m 1.0 CH 0.80m 1.5 CH 0.80m CH CH 1.50m CH CH 1.50m CH CH 1.50m CH CH 1.50m CH CH <td>0.80m 0.80m Sandy CLAY - medium to high plasticity, pale orange-brown, fire grained sand, trace fine grained angular gravel. \$\$</td> <td>0.80m 0.80m Sandy CLAY - medium to high plasibility, pale s s VSI HP 280 0.50 0.00m 1.0 CH s s VSI HP 280 1.00m 1.0 CH s s VSI HP 280 1.00m 1.0 CH s s v HP 300 1.00m 1.0 CH s s v HP 300 1.00m 1.0 CH s s v HP 300 1.00m CH S S S S HP 450 1.00m CH S S S S S S 1.5 CH S S S S S S 1.5 CH S S S S S S 1.5 CH S S S S S S S 1.5 CH S S S S S S S S 1.5 CH S S S S S S S S 1.5 CH S</td>	0.80m 0.80m Sandy CLAY - medium to high plasticity, pale orange-brown, fire grained sand, trace fine grained angular gravel. \$\$	0.80m 0.80m Sandy CLAY - medium to high plasibility, pale s s VSI HP 280 0.50 0.00m 1.0 CH s s VSI HP 280 1.00m 1.0 CH s s VSI HP 280 1.00m 1.0 CH s s v HP 300 1.00m 1.0 CH s s v HP 300 1.00m 1.0 CH s s v HP 300 1.00m CH S S S S HP 450 1.00m CH S S S S S S 1.5 CH S S S S S S 1.5 CH S S S S S S 1.5 CH S S S S S S S 1.5 CH S S S S S S S S 1.5 CH S S S S S S S S 1.5 CH S

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

PAGE: JOB NO:

LOGGED BY:

DATE:

BOREHOLE NO:

BH406

1 OF 1 NEW19P-0143G

BB

		YPE: OLE DIAM			EXCA 300 m		R WITH AUGER SURF	FACE RL: JM:					
	Dril	ling and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	FILL-TOPSOIL: Sandy CLAY - low plasticit grey-brown, fine to coarse grained (mostly grained) sand, trace fine to medium grained gravel, with some sticks.	fine	M ~ Wp				FILL - TOPSOIL
		<u>0.30m</u> U50		-			6.20m FILL: CLAY / Sandy CLAY - medium plastic with some red-brown, pale orange-brown a grey-brown, fine to coarse grained (mostly grained) sand, trace fine grained angular g	ind fine		St -	HP	150	FILL - CONTROLLED
		0.50m		0.5		CI				VSt	HP	170	
				-			0.70m		M > W _P		HP	160	
F	Encountered	1.00m				CI	FILL: Sandy CLAY - medium plasticity, red- and pale orange-brown, fine grained sand.	-brown		VSt	HP	280	
4 Datgel Lab and In Situ 100	Not Er	U50 1.15m		-		сі	FILL: Sandy CLAY - medium plasticity, red- with some pale grey to white, fine to coarse (mostly fine to medium grained) sand, with to medium grained angular gravel.	e grained			HP	410	
				- 1. <u>5</u> -			1.40m FILL: Sandy CLAY - high plasticity, pale brown, fi pale orange-brown with some red-brown, fi coarse grained (mostly fine to medium grai sand, trace fine grained angular gravel.	ne to	– M ~ W	VSt - H	HP HP	350 220	
seru seurawingrii				- 2.0			2.00m				ΗP	310	
-				_			Hole Terminated at 2.00 m						
TEOLETI NEWISI PLACE				-									
	GEND:			Notes, Sa U ₅₀			<u>s</u> ter tube sample	Consiste	ncy /ery Soft		<u>U</u> <2	CS (kPa 25	Moisture Condition D Dry
	Wai (Da Wai	ter Level te and time sh ter Inflow ter Outflow	nown)	CBR E ASS B	Bulk s Enviro (Glass Acid S	ample f nmenta jar, se culfate S c bag, a	or CBR testing I sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	Soft Firm Stiff /ery Stiff Hard Friable		25 50 10 20	5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit
ан гір 11.1.900 год —	G tr D	anges radational or ansitional stra efinitive or dis rata change	ita	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density	V L ME D VD	La D M D	ery Lo bose ediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 65 - 100%

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4 LOCATION: MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH407

1 OF 1

NEW19P-0143G

BB 22/8/22

		'YPE: OLE DIAN			EXCA 300 m		R WITH AUGER SURF	FACE RL: JM:					
	Dril	ling and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
AD/T	Not Encountered	0.30m U50 0.45m 1.00m U50 1.30m				сн сі сі	FILL: Sandy CLAY - medium plasticity, brosome red-brown and pale orange-brown, fimedium grained sand. Trace pale grey to pale brown. 1.00m FILL: Sandy CLAY - medium plasticity, grey pale brown, fine grained sand. 1.30m FILL: Sandy CLAY - medium plasticity, grey pale brown, fine grained sand. 1.30m FILL: Sandy CLAY - medium plasticity, pale with some red-brown, fine grained sand. 1.60m 1.60m FILL: CLAY - medium to high plasticity, red with some pale grey to white, with some fin medium grained sand. 1.60m 1.60m Hole Terminated at 2.00 m	y-brown to	M ~ Wp M > Wp	St- VSt		200 130 180 150 200 250 350 380	FILL - CONTROLLED /
	Wai (Da - Wai	ter Level te and time sl ter Inflow ter Outflow anges	hown)	Notes, Sa U₅0 CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	n Diame ample f onmenta s jar, se Sulfate \$	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ncy ery Soft oft irm tiff ery Stiff lard riable		<2 25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
	G tr D	radational or ansitional stra efinitive or dis rata change		Field Test PID DCP(x-y) HP	<u>:s</u> Photo Dynar	ionisati nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L D VD	La D M	ery Lo bose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

BOREHOLE NO: PAGE: JOB NO:

LOGGED BY:

DATE:

BH408 1 OF 1

NEW19P-0143G

BB

		YPE: OLE DIAN			EXCA 300 m		R WITH AUGER SURF	ACE RL: JM:					
	Dril	ling and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	FILL-TOPSOIL: Sandy CLAY - low plasticity grey-brown, fine to medium grained sand, t grained angular gravel, with some sticks.	y, dark race fine					FILL - TOPSOIL
		0.30m U50 0.45m		- - 0.5_ -		CI	6.15m 5 FILL: Sandy CLAY - medium plasticity, brows some red-brown, pale grey to grey-brown a orange-brown, fine to coarse grained (mosi medium grained) sand, with some fine to m grained angular gravel. 0.80m	ind pale tly fine to	M > Wp	St	HP HP	120 100 110	FILL - CONTROLLED
AD/T	Not Encountered	0.90m U50 1.05m		- - 1. <u>0</u>		CI	Sandy CLAY - medium plasticity, pale oran to orange-brown, trace red-brown, fine grai				HP	250	RESIDUAL SOIL
12.1 10.02.00.04 Dauger Lap and in Shu				- - - 1. <u>5</u>			Sandy CLAY - medium plasticity, pale oran and red-brown, fine to medium grained san some fine to medium grained rounded to sub-angular gravel. Red-brown with some pale grey to white.	ge-brown d, with	~ W _P	VSt	HP	350	
						CI	200		ž		HP	380	
				2.0	<u>,,,,,,,,,</u>		Hole Terminated at 2.00 m						
	GEND: ter			Notes, Sa U ₅₀			<u>s</u> er tube sample	Consister VS V	1cy ery Soft			CS (kPa 25	a) <u>Moisture Condition</u> D Dry
	Wat (Da	ter Level te and time sl ter Inflow ter Outflow <u>anges</u>	hown)	CBR E ASS B	Bulk s Enviro (Glass Acid S (Plasti	ample f nmenta jar, sea sulfate S	or CBR testing I sample lade and chilled on site) ioil Sample ir expelled, chilled)	S S F F St S VSt V H H	oft irm tiff ery Stiff ard <u>riable</u>		25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	M Moist W Wet W _p Plastic Limit
	G tr D	radational or ansitional stra efinitive or dis rata change	ata	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L D VD) M D	ery Lo bose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD BOREHOLE NO:

PAGE:

DATE:

JOB NO:

BH409

1 OF 1

NEW19P-0143G

LOGGED BY: BB

		TYPE: IOLE DIAN			EXCA 300 m		R WITH AUGER SURF	FACE RL: JM:					
	Dri	lling and San	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	TOPSOIL: Sandy CLAY - low plasticity, dar grey-brown, fine grained sand, with some s	k ticks.					TOPSOIL / POSSIBLE FILL-TOPSOIL
				-		сі	Sandy CLAY - medium plasticity, pale brow grained sand.				ΗP	220	RESIDUAL SOIL
				0. <u>5</u> -			Sandy CLAY - medium plasticity, pale oran trace red-brown, fine grained sand, trace fir angular gravel.	ge-brown, ne grained	M > w _P	St - VSt	HP	280	
In Situ Tool AD/T	Not Encountered	0.90m U50 1.10m		- - 1. <u>0</u> -		CI					HP	310	
0.T LIB 1.1.G.LB Log NON-CORED BOREHOLE. TEST PIT NEW19P-0143G-AA DRAFT LOGS GPJ <-DrawingFile>> 09/09/2022 10:51 10:02:00:04 Datgel Lab and In Situ Tool I I I I I I I I I I II I II I I II I II I				- - 1. <u>5</u>			1.20m Sandy CLAY - medium to high plasticity, re with some pale grey to white, fine to coarse (mostly fine grained) sand, with some fine t grained sub-angular to sub-rounded gravel	e grained o medium	~ Wp	Vet	HP	420	
sS.GPJ < <drawingfile>> 09/09/202</drawingfile>						СН	2.00m		N~	VSt - H	HP	390 410	
AFT LOG							Hole Terminated at 2.00 m						
- TEST PIT NEW19P-0143G-AA UK													
	– (Da — Wa	ter Level Ite and time sl Iter Inflow Iter Outflow	hown)	<u>Notes, Sa</u> U₅ CBR E ASS	50mm Bulk s Enviro (Glass Acid S	Diame ample f nmenta jar, se sulfate S	<u>s</u> er tube sample or CBR testing I sample aled and chilled on site) oil Sample ir expelled, chilled)	S S F F St S VSt V	ncy /ery Soft Soft :irm Stiff /ery Stiff lard		<2 25 50 10 20	<u>CS (kPa</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
QT LIB 1.1.GLB Log NC	rata Ch G tr D		ata	B Field Test PID DCP(x-y) HP	Bulk S <u>s</u> Photo Dynar	ample ionisatio	n detector reading (ppm) trometer test (test depth interval shown) meter test (UCS kPa)	1	riable V L MD D VD	Lo M D	ery Lo bose	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH410

1 OF 1

NEW19P-0143G

BB

22/8/22

	Drill	ing and Sam	pling				Material description and profile information			1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer	ty/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	TOPSOIL: Sandy CLAY - low plasticity, da grey-brown, fine grained sand, with some s		M ~ Wp				TOPSOIL / POSSIBLE FILL-TOPSOIL
		0.50m		- 0.5		CI	Sandy CLAY - medium plasticity, pale brow grained sand.	 vn, fine	M > Wp		HP	210	RESIDUAL SOIL
		0.50m U50 0.65m		- 0.5			Sandy CLAY - medium plasticity, pale orar and red-brown, fine grained sand, trace fin angular gravel.	nge-brown e grained		St - VSt			
/	Not Encountered					CI					- HP	380	
	Not Er	Not Enco		-			1.10m		_	VSt	-		
							with some pale grey to white, fine to coarse (mostly fine grained) sand, with some fine angular gravel.	e grained	$M\sim w_{\rm P}$		HP	450	
				-		СН				н	HP	480	
				2.0			2.00m Hole Terminated at 2.00 m						
				-									
FG	END:			Notes, Sa	mples a	nd Teel	s	Consiste	ency		 	CS (kPa) Moisture Condition
	er Wat (Dat ∙ Wat I Wat	er Level te and time sh er Inflow er Outflow anges	own)	U₅0 CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se ulfate S	er tube sample or CBR testing I sample aled and chilled on site) ioil Sample iir expelled, chilled)	VS V S S F F St S VSt V H F	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable		<2 25 50 10 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	Discute contribution D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	Gi tra De	radational or ansitional strat efinitive or dist rata change	a	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynar	onisatio	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MD D	Lo D M	ery Lo bose lediun ense	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: THE GARDENS - STAGE 4

LOCATION: MEDOWIE

PAGE: JOB NO:

LOGGED BY:

DATE:

BOREHOLE NO:

BH411 1 OF 1

NEW19P-0143G

BB

		lype: Iole dian			EXCA 300 m		R WITH AUGER SURF	FACE RL: JM:					
	Dri	lling and Sar	npling				Material description and profile information				Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
				-		CL	TOPSOIL: Sandy CLAY - low plasticity, dar grey-brown, fine grained sand, with some s						TOPSOIL / POSSIBLE FILL-TOPSOIL
				-		CI	Sandy CLAY - medium plasticity, pale brow grained sand.	 vn, fine		St - VSt	ΗP	230	RESIDUAL SOIL
				0. <u>5</u>			Sandy CLAY - medium plasticity, pale oran fine grained sand, trace fine grained angula	ige-brown, ar gravel.	M > w _P		HP	300	
ol AD/T	Not Encountered	0.80m U50 1.00m				CI	Pale orange-brown with some red-brown.			VSt	HP	350	
AL	Not E			-			1.10m Sandy CLAY - medium to high plasticity, re with some pale pale orange-brown, fine to grained (mostly fine grained) sand.				HP	350	
+0.00/20/01 10:01 22.02/60/60 .				- 1. <u>5</u> -		СН	Red-brown, trace pale grey to white, trace grained angular gravel. Red-brown with some pale grey to white.	fine	M ~ w _P	VSt -	HP	410	
.0GS.GPJ < <drawingfile>></drawingfile>				- 2.0			2.00m Hole Terminated at 2.00 m			н	HP	450	
				-									
	- (Da – Wa ⊲ Wa	ter Level te and time si ter Inflow ter Outflow	í í	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate S	s ter tube sample or CBR testing I sample aled and chilled on site) ioil Sample air expelled, chilled)	S S F F St S VSt V H F	ncy /ery Soft foft irm atiff /ery Stiff lard iriable	<u> </u>	<2 25 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
6 51	tr D	anges Gradational or cansitional stra Definitive or dis trata change		Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynar	ionisatio nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MD D VD	Lo M D	ery Lo oose edium ense ery De	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

APPENDIX B:

Results of Laboratory Testing

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

	k Sw	ell Ind	dex R	epor	[Issue No
ient:	Mc Sui	CLOY GRO te 2, Groun wcastle NS	UP d Floor, 31 [°]	•			N		Accredited for comp The results of the ter included in this docu standards. Results provided rela	sts, calibrations and ument are traceable	/or measurements to Australian/nationa
oject No. oject Nar oject Loc	ne: The	W19P-0143 e Gardens S 3 - 730 Med	Stage 4	, Medowie				RECOGNISED	Approved Signat (Geotechnician) NATA Accredited Date of Issue: 6/	d Laboratory Nu	
ample	Details										
ample ID:		EW22W-306									
ampling I aterial:		he results ou	tlined below	apply to the	sample as r	received Date Sa	mplady	22/08/2022			
ource:		andy Clay n-Site Insitu					bmitted:	23/08/2022			
pecificati		o Specificatio	on								
		H401 - (0.50	- 0.65m)								
ate Teste	d: 2	9/08/2022									
well Te				AS 12	89.7.1.1	Shrin				AS	1289.7.1
	aturation).6			on drying (-	2.8		
Disture C	ontent be	tore (%):	22	2.4		Shrinka	ge Moistu	re Conteni	(%): 21.2		
	ontent af	or (%)	20	26		Est ine	rt material	(%)	1%		
oisture C	ontent af			9.6 70		11	rt material ing during		1% 2: Nil		
oisture C st. Unc. C	omp. Stro	er (%): ength befor ength after	re (kPa): 27			Crumbl	rt material ing during g during s	shrinkage			
oisture C st. Unc. C st. Unc. C	Comp. Stro Comp. Stro	ength befor	re (kPa): 27	70		Crumbl	ing during	shrinkage	: Nil		
oisture C st. Unc. C st. Unc. C	Comp. Stro Comp. Stro	ength befor	re (kPa): 27	70	Shrinkage	Crumbl Crackin	ing during	shrinkage hrinkage:	: Nil		
oisture C st. Unc. C st. Unc. C	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
oisture C st. Unc. C st. Unc. C	Comp. Stro Comp. Stro	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
bisture C st. Unc. C st. Unc. C hrink S	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
bisture C st. Unc. C st. Unc. C hrink S	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
bisture C st. Unc. C st. Unc. C hrink S	Comp. Stro Comp. Stro Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
bisture C at. Unc. C at. Unc. C hrink S Magae (%) llev	Comp. Stro Comp. Stro Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
bisture C at. Unc. C at. Unc. C hrink S Magae (%) llev	Comp. Stro Comp. Stro Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
oisture C at. Unc. C at. Unc. C hrink S Magaine (%) IIa	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		· · · · · · · · · · · · · · · · · · ·
bisture C at. Unc. C at. Unc. C hrink S Magae (%) llev	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
oisture C at. Unc. C at. Unc. C hrink S Magaine (%) IIa	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
oisture C st. Unc. C st. Unc. C hrink S	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
oisture C at. Unc. C at. Unc. C hrink S Magaine (%) IIa	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil		
oisture C at. Unc. C at. Unc. C hrink S Magaine (%) IIa	Comp. Stre Comp. Stre Swell	ength befor	re (kPa): 27	70 00	Shrinkage	Crumbl Crackin	ing during Ig during s	shrinkage hrinkage:	: Nil	45.0	50.0
oisture C st. Unc. C st. Unc. C hrink S ^{MSI} (%) IIe	Comp. Stra Comp. Stra Swell 10.0 - · · · · 5.0 - · · · -5.0 - · · ·	ength befor	re (kPa): 27 (kPa): 30		20.0	Crumbl Crackin	ing during s sw ell sw ell 30.0	shrinkage hrinkage:	P: Nil Nil	45.0	50.0

Comments

Form No: 18932, Report No: SSI:NEW22W-3061-S01

 QUALTEST Laboratory (NSW) Pty Ltd (20708)

 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

 T:
 02 4968 4468

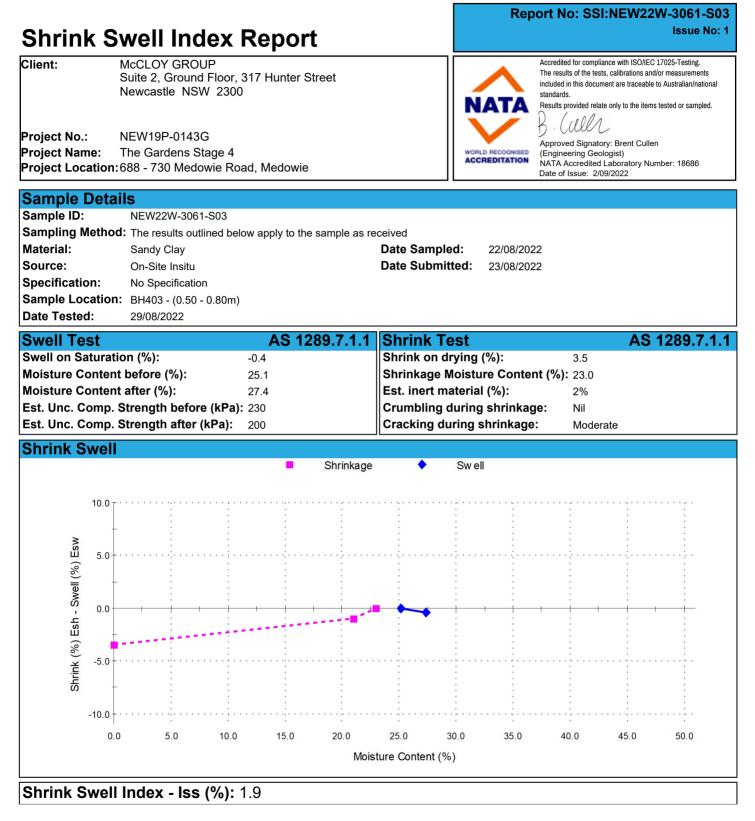
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-3061-S02 Issue No: 1 **Material Test Report** Client: McCLOY GROUP Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements Suite 2, Ground Floor, 317 Hunter Street included in this document are traceable to Australian/national Newcastle NSW 2300 standards. NATA Results provided relate only to the items tested or sampled. Cull B NEW19P-0143G Project No.: Approved Signatory: Brent Cullen Project Name: The Gardens Stage 4 BLD RECOR (Engineering Geologist) ACCREDITATION NATA Accredited Laboratory Number: 18686 Date of Issue: 1/09/2022 Project Location: 688 - 730 Medowie Road, Medowie

Sample Details

Sample ID:	NEW22W-3061-S02
Date Sampled:	22/08/2022
Date Received:	23/08/2022
Source:	On-Site Insitu
Material:	Sandy Clay
Specification:	No Specification
Sample Location:	The results outlined below apply to the sample as received BH402 - (0.80 - 1.00m)

Test Results


Test Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	17.5	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.1	69	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	27	
Plasticity Index (%)	AS 1289.3.3.1	42	
Date Tested		29/08/2022	

Comments

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

- т٠ 02 4968 4468
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Comments

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

lient: roject No.: roject Name roject Loca	Suite New	LOY GRO 2, Ground castle NS	d Floor, 317	' Hunter St							
oject Namo oject Loca	NEV		VV 2300		treet		N		Accredited for compl The results of the tes included in this docu standards. Results provided rela	iment are traceable	/or measurements to Australian/nationa
		/19P-0143 Gardens S - 730 Med	stage 4	Medowie				EDITATION	Approved Signat (Engineering Geo NATA Accredited Date of Issue: 2/	ologist) d Laboratory Nui	
ample D	Details										
ample ID:		W22W-306	1-S04								
ampling Me	ethod: Th	e results ou	tlined below a	apply to the	sample as r	received					
aterial:	Sa	ndy Clay				Date Sa	-	22/08/2022	2		
ource:		-Site Insitu				Date Sul	bmitted:	23/08/2022	<u>,</u>		
pecification		Specificatio									
ample Loca			- 0.70m)								
ate Tested:		/08/2022									
well Tes					89.7.1.1					AS	1289.7. 1
well on Sat	•		-0.				on drying (-	1.9		
oisture Co			25			11	ge Moistu				
oisture Co			26			11	rt material		2%		
st. Unc. Co	-	-					ing during	-			
st. Unc. Co	-	igin alter	(kPa): 36	0		CIACKIII	g during s	iiiiikaye.	Mode	rate	
hrink Sv	vell			_	- ····						
					Shrinkage	e 🔹	Sw ell				
	10.0		,								
	10.0										
	-										÷
ell (%) Esw	5.0 - · · · ·										
1 (%	5.0										
) lle	-					:					÷
Shrink (%) Esh - Sw	0.0		:	:			1		-	:	:
Ļ	0.0		:							:	:
Ц Ц						:					-
%)	5.0	:	:	:	:	:	:	:			:
link	-5.0 - · · · ·				;						
Shi	+		:	:		÷					:
			:	:		÷					:
-	10.0 + · · · ·										
	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
					Moi	sture Conte	nt (%)				

Comments

Form No: 18932, Report No: SSI:NEW22W-3061-S04

 QUALTEST Laboratory (NSW) Pty Ltd (20708)

 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

 T:
 02 4968 4468

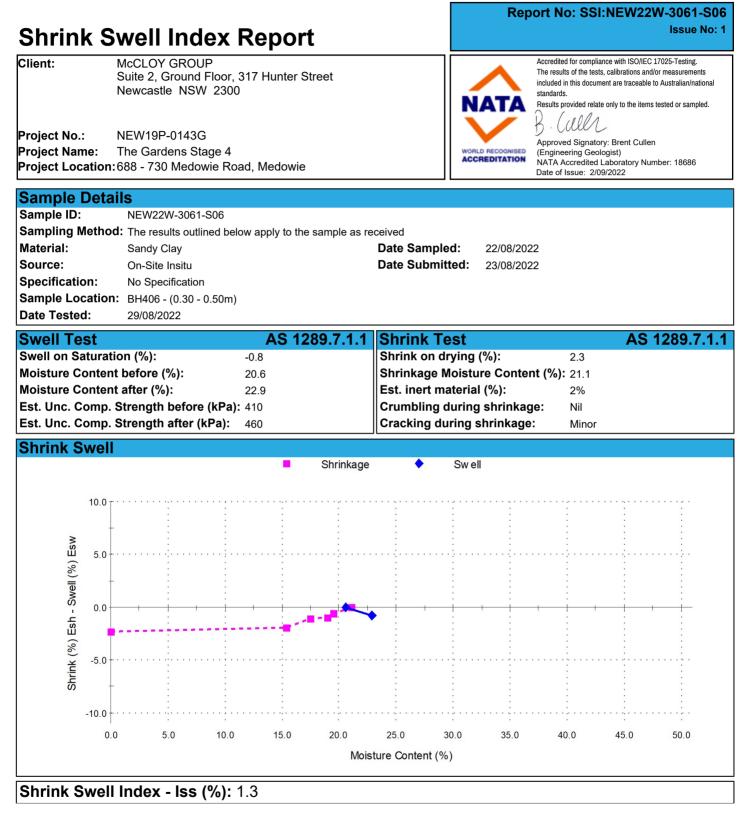
- 02 4960 9775
- F: E: W:
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Report No: MAT:NEW22W-3061-S05 Issue No: 1 **Material Test Report** Client: McCLOY GROUP Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements Suite 2, Ground Floor, 317 Hunter Street included in this document are traceable to Australian/national Newcastle NSW 2300 standards. NATA Results provided relate only to the items tested or sampled. Cull B NEW19P-0143G Project No.: Approved Signatory: Brent Cullen Project Name: The Gardens Stage 4 BLD RECOR (Engineering Geologist) ACCREDITATION NATA Accredited Laboratory Number: 18686 Date of Issue: 1/09/2022 Project Location: 688 - 730 Medowie Road, Medowie

Sample Details

Sample ID:	NEW22W-3061-S05
Date Sampled:	22/08/2022
Date Received:	23/08/2022
Source:	On-Site Insitu
Material:	Sandy Clay
Specification:	No Specification
Sample Location:	The results outlined below apply to the sample as received BH405 - (0.80 - 1.00m)

Test Results


Test Results			
Description	Method	Result	Limits
Sample History	AS 1289.1.1	Oven-dried	
Preparation	AS 1289.1.1	Dry Sieved	
Linear Shrinkage (%)	AS 1289.3.4.1	16.0	
Mould Length (mm)		250	
Crumbling		No	
Curling		No	
Cracking		Yes	
Liquid Limit (%)	AS 1289.3.1.1	58	
Method		Four Point	
Plastic Limit (%)	AS 1289.3.2.1	25	
Plasticity Index (%)	AS 1289.3.3.1	33	
Date Tested		29/08/2022	

Comments

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

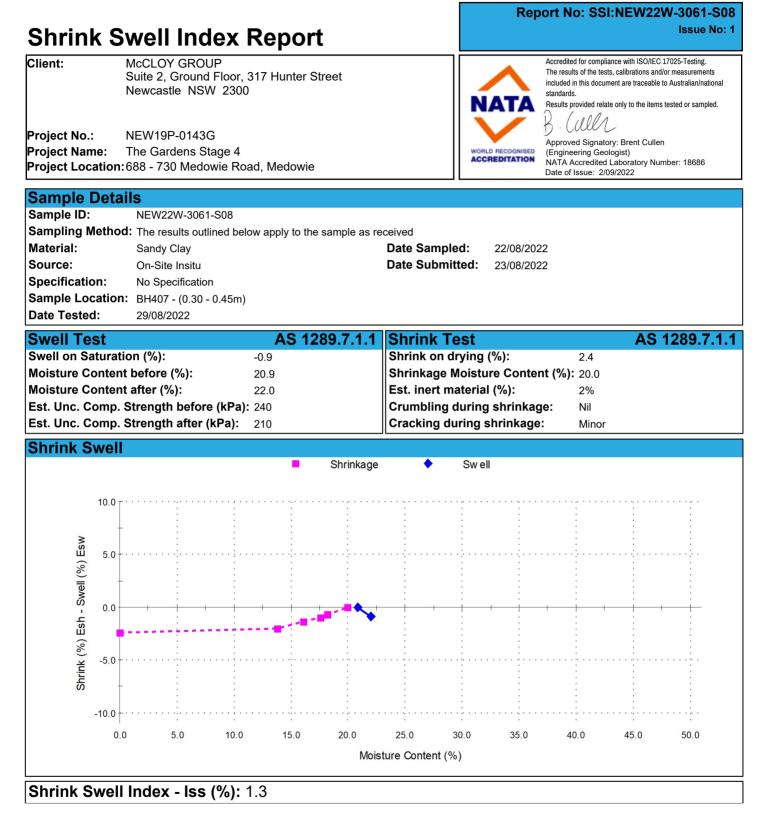
- т٠ 02 4968 4468
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

Comments

Form No: 18932, Report No: SSI:NEW22W-3061-S06

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304 T: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

nrini	k Sw	ell Ind	dex R	epor	t			Repo	ort No: SS	1:NEW22	W-3061-S Issue No
ent:	Mc Sui	CLOY GRO te 2, Groun wcastle NS	UP d Floor, 317	•			N		Accredited for compl The results of the tes included in this docu standards. Results provided rela	sts, calibrations and ment are traceable	/or measurements to Australian/national
oject No. oject Nan oject Loc	ne: The	W19P-0143 e Gardens S 3 - 730 Med	Stage 4	Medowie				EDITATION	Approved Signate (Engineering Geo NATA Accredited Date of Issue: 2/	ologist) I Laboratory Nur	
mple	Details										
mple ID:		EW22W-306									
	lethod: ⊤	he results ou	tlined below	apply to the	sample as i	eceived					
terial:		andy Clay				Date Sa	-	22/08/2022	2		
urce:		n-Site Insitu				Date Sul	bmitted:	23/08/2022	2		
ecificatio		o Specificatio									
		H406 - (1.00	- 1.15m)								
te Teste	d: 2	9/08/2022									
vell Te	st			AS 12	89.7.1.1	Shrink	C Test			AS	1289.7.1
	aturation	(%):	-0				on drying (%):	2.3		
	ontent be		20).6		Shrinka	ge Moistur	e Content	t (%): 21.1		
	ontent aft		22	2.9			rt material		2%		
t. Unc. C	omp. Stre	ength befor	re (kPa): 41	10		Crumbli	ing during	shrinkage	e: Nil		
	-	ength after				11	g during s	-			
t. Unc. C											
	-	-									
	-	-			Shrinkage		Sw ell				
	-			•	Shrinkage	•	Sw ell				
	-				Shrinkage	•	Sw ell				
	well	· · · · · · · · · · · · · · · · · · ·		• • •	Shrinkage	• •	Sw ell		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
nrink S	well			• • • • • • • • • • • • • • • • • • •	Shrinkage	•	Sw ell				
nrink S	10.0 - · · · ·				Shrinkage	•	Sw ell				
nrink S	well			••••••	Shrinkage	•••••	Sw ell				
nrink S	10.0 - · · · ·				Shrinkage	• • • •	Sw ell				
nrink S	10.0 - · · · · 5.0 - · · ·				Shrinkage	• • •	Sw ell				
nrink S	10.0 - · · · ·				Shrinkage	•	Sw ell				
nrink S	10.0 - · · · · 5.0 - · · ·		· · · · · · · · · · · · · · · · · · ·		Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
nrink S	10.0 - · · · · 5.0 - · · · 0.0				Shrinkage		Sw ell		· · · · · · · · · · · · · · · · · · ·		
nrink S	10.0 - · · · · 5.0 - · · ·				Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·		
	10.0 - · · · · 5.0 - · · · 0.0		· · · · · · · · · · · · · · · · · · ·		Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·		
nrink S	10.0 - · · · · 5.0 - · · · 0.0				Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·		
nrink S	10.0 - · · · · 5.0 - · · · 0.0				Shrinkage	•	Sw ell				
nrink S	10.0 - · · · · · · · · · · · · · · · · · ·	5.0	10.0	15.0	Shrinkage	25.0	Sw ell	35.0	40.0	45.0	50.0
nrink S	10.0 - · · · · · · · · · · · · · · · · · ·	5.0	10.0		20.0	•	30.0	35.0	40.0	45.0	50.0


Comments

Form No: 18932, Report No: SSI:NEW22W-3061-S07

QUALTEST Laboratory (NSW) Pty Ltd (20708) 2 Murray Dwyer Circuit, Mayfield West, NSW 2304

- т٠ 02 4968 4468
- 02 4960 9775
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896
- F: E: W:

Comments

lay Insitu ification (1.00 - 1.30m) 22	Iunter Street	Date Sampled: 22	The results of the tests, included in this document standards. Results provided relate B. CULLA Approved Signatory (Engineering Geolo	gist) aboratory Number: 18686
V-3061-S09 Its outlined below app lay Insitu ification (1.00 - 1.30m) 22		Date Sampled: 22	2/08/2022	/2022
-0.7 %): 23.7 : 22.4 before (kPa): 180 after (kPa): 200	AS 1289.7.1.1 Shrinkage	Shrink Test Shrink on drying (%) Shrinkage Moisture Est. inert material (% Crumbling during shr Cracking during shr	Content (%): 21.5 %): 3% nrinkage: Nil	AS 1289.7.1.
		• • • •		
	15.0 20.0	25.0 30.0	35.0 40.0	45.0 50.0
	10.0		10.0 15.0 20.0 25.0 30.0 Moisture Content (%)	

Comments

hrin	k Sw	ell Inc	dex R	enori	•			керо	ort No: SS		Issue No:
ient:	Mc0 Suit	CLOY GRO	UP d Floor, 317	•			Ň		Accredited for compl Fhe results of the tes ncluded in this docu standards. Results provided rela	sts, calibrations and, ment are traceable	/or measurements to Australian/national
oject No.: oject Nan oject Loc	ne: The	V19P-0143 Gardens S - 730 Mede		Medowie					Approved Signate Engineering Geo NATA Accredited Date of Issue: 2/	ologist) I Laboratory Nur	
ample	Details										
mple ID:		EW22W-306									
			tlined below	apply to the	sample as i						
aterial:		andy Clay				Date Sa	-	22/08/2022			
ource:		n-Site Insitu				Date Sul	bmitted:	23/08/2022			
ecificatio		o Specificatio									
imple Loo ite Testeo		H408 - (0.30 9/08/2022	- 0.45M)								
		100/2022		10 /0							
well Te		0().			89.7.1.1	Shrink		0/)-		AS	1289.7.1
	aturation (-	-1				on drying (-	3.2		
	ontent be		23	3.4 6.7		11	ge Moistu rt material		. ,		
	untent att	EI (/0).	20)./		ILESI, IIIEI	i i illatellai	(/0).	2%		
oisture Co									. Nii		
st. Unc. C	omp. Stre	ngth befor	re (kPa): 60 (kPa): 90)		Crumbli	ing during	shrinkage			
st. Unc. C st. Unc. C	omp. Stre omp. Stre)		Crumbli		shrinkage	e: Nil Minor		
t. Unc. C t. Unc. C	omp. Stre omp. Stre	ngth befor)	Shrinkaq	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
st. Unc. C	omp. Stre omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during	shrinkage hrinkage:			
st. Unc. C st. Unc. C	omp. Stre omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C	omp. Stre omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			······
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			· · · · · · · · · · · · · · · · · · ·
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			· · · · · · · · · · · · · · · · · · ·
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>1rink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>hrink S</mark>	omp. Stre	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:			
t. Unc. C t. Unc. C <mark>1rink S</mark>	omp. Stre omp. Stre well 10.0 - · · · · 5.0 - · · · · -5.0 - · · · ·	ngth befor)	Shrinkage	Crumbli Crackin	ing during g during s	shrinkage hrinkage:		45.0	50.0
t. Unc. C t. Unc. C hrink S	omp. Stre omp. Stre well 10.0 - · · · · · 5.0 - · · · · 0.0	ngth befor ngth after	(kPa): 90		20.0	Crumbli Crackin	ang during s g during s Sw ell	shrinkage:	Minor		50.0

Comments

Shrink	Sw	ell Inc	lex R	eport	•			Repo	ort No: SS	I:NEW22	W-3061-S1 Issue No:
Client:	McC Suit	CLOY GRO e 2, Ground vcastle NS	UP d Floor, 317	-			N		standards.	sts, calibrations and ment are traceable	
roject No.: roject Name roject Locat	: The	V19P-0143 Gardens S - 730 Medo	tage 4	Medowie				REDITATION	Approved Signat (Engineering Ger NATA Accredited Date of Issue: 2/	ologist) I Laboratory Nui	
ample De ample ID: ampling Me laterial: ource: pecification	NE thod: Th Sa Oi	EW22W-306 ⁻ ne results out andy Clay n-Site Insitu o Specificatio	lined below	apply to the	sample as r	eceived Date Sar Date Sul	-	22/08/2022 23/08/2022			
ample Loca ate Tested:	tion: BI	•									
well on Satu oisture Con oisture Con st. Unc. Cor st. Unc. Cor hrink Sw	itent bei itent afte np. Stre np. Stre	fore (%): er (%): ngth befor		4.6 2.1 0	Shrinkage	Shrinka Est. ine Crumbli Crackin	rt material ng during	re Content (%): shrinkage hrinkage:	1% •: Nil	rate	
	0.0 - · · · · · - 5.0 - · · · ·					· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·
. Swell (%	0.0	: : !									: : :
Shrink (%) Esh	0.0 5.0 0.0										

Comments

Shrin	k Sı	vell In	dex R	epor	t			Repo	ort No: SS	I:NEW22	W-3061-S ⁴ Issue No
lient:	N	/IcCLOY GR Suite 2, Grou Jewcastle N	OUP nd Floor, 31	•			N		Accredited for compl The results of the test included in this docu standards. Results provided rela	sts, calibrations and iment are traceable	/or measurements to Australian/national
oject No.: oject Nan oject Loc	ne: T	NEW19P-014 The Gardens 388 - 730 Me	Stage 4	, Medowie				EDITATION	Approved Signat (Engineering Ger NATA Accredited Date of Issue: 2/	ologist) d Laboratory Nui	
ample l	Detai	S									
ample ID:		NEW22W-30)61-S12								
ampling N	lethod	The results o	outlined below	apply to the	sample as	received					
aterial:		Sandy Clay				Date Sa	mpled:	22/08/2022	2		
ource:		On-Site Insite	u			Date Su	bmitted:	23/08/2022	2		
pecificatio	on:	No Specifica	tion								
ample Lo	cation:	BH409 - (0.9	0 - 1.10m)								
ate Testeo		29/08/2022									
well Te	et			VC 10	89.7.1.1	Shrin	k Tost			76	1289.7.1
well on Sa		n (%):		AJ 12	09.7.1.1		on drying (0/)•	2.2	AJ	1209.7.1
		before (%):						-			
				7.8		Shrinkage Moisture Content (%): 27.7Est. inert material (%):1%Crumbling during shrinkage:Nil					
oisture Co				8.0							
	-	trength befo						-			
st. Unc. C	omp. s	trength afte	er (KPa): 4	50		Crackin	g during s	nrinkage:	Major	•	
hrink S	well										
					Shrinkage	e 🔶	Sw ell				
	10.0 T ·										
	10.0	:	:	:	:	:	:	:	:	:	:
	+					÷					
SW	5.0					÷					÷
() E	5.0 - ·										
6) II	1					÷					
we				-		÷					÷
0	0.0		1	<u> </u>	I I			1	I I I	1	1
Esh			وويتعادي	متنفيت	uuu én <mark>∎</mark> r						÷
%) E	T				:	:					÷
Shrink (%) Esh - Swell (%) Esw	-5.0 - ·										
Irin						÷					:
ঠ	t				÷	÷					
	-10.0 - ·	:		:		•					
							·				
	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0

Comments

Shrinl	k Sw	ell Inc	lev R	enor	ŀ			Repo	ort No: SS	SI:NEW22	W-3061-S1 Issue No:
lient:	Mc(Sui Nev	CLOY GRO te 2, Ground wcastle NS	UP d Floor, 317 W 2300	•			N	\land	Accredited for comp The results of the te included in this docu standards. Results provided rel	sts, calibrations and iment are traceable	/or measurements to Australian/national
roject No.: roject Nan roject Loc	ne: The	W19P-0143 e Gardens S 8 - 730 Mede	stage 4	Medowie			WORLD	RECOGNISED	Approved Signat (Engineering Ge NATA Accredited Date of Issue: 2/	ologist) d Laboratory Nur	
ample ID:	N	EW22W-306									
aterial: ource: pecificatio	S O Dn: N Cation: B	he results out andy Clay n-Site Insitu o Specificatic H410 - (0.50 9/08/2022	on	apply to the	sample as r	Date Sai	-	22/08/2022 23/08/2022			
	aturation ontent be ontent aft omp. Stre	fore (%):	29 re (kPa): 34	.4 9.4 9.9 90	09.7.1.1	Shrinka Est. ine Crumbli	on drying (ge Moistu rt material ing during g during s	re Conten (%): shrinkage	1% e: Nil		1289.7.1.
hrink S	well				Shrinkage	e 🔶	Sw ell				
well (%) Esw	10.0 - · · · · · · · · · · · · · · · · · ·										
Esh - Swell	0.0	+ 1	 					+	+ I I		
Shrink (%)	-5.0										
	-10.0 - · · · ·	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
Shrink (%) Esh - S	-10.0 +····	5.0 dex - Iss				25.0 sture Conte		35.0	40.0	45.0	50.0

Comments

Shrin	k Sw	ell Inc	dex R	epor	t			Repo	ort No: SS	51:NEW22	W-3061-S Issue No
Client:	Su	CLOY GRO ite 2, Groun wcastle NS	d Floor, 317	' Hunter S	treet		N		standards.	sts, calibrations and ument are traceable	
Project No. Project Nan Project Loc	ne: The	W19P-0143 e Gardens S 8 - 730 Med	Stage 4	Medowie				D RECOGNISED	Approved Signat (Engineering Ge NATA Accredited Date of Issue: 2)	ologist) d Laboratory Nu	
Sample	Details										
Sample ID:		IEW22W-306	1-S14								
Sampling N	Method: ⊺	he results ou	tlined below	apply to the	sample as	received					
Material:	S	Sandy Clay				Date Sa	mpled:	22/08/2022	2		
Source:		Dn-Site Insitu				Date Su	bmitted:	23/08/2022	2		
Specificatio		lo Specificatio									
		8H411 - (0.80	- 1.00m)								
Date Teste	d: 2	9/08/2022									
Swell Te	st			AS 12	89.7.1.1	Shrinl	k Test			AS	1289.7.1
Swell on Sa			-0	.4		11	on drying		2.9		
Noisture C			29	0.4			-	re Content	t (%): - 98.7		
Moisture C			33			11	rt material		1%		
Est. Unc. C	-	ength befor						shrinkage			
Est. Unc. C	omp. Str	ength after	(kPa): 34	.0		Crackin	g during s	hrinkage:	Major	r	
		ength after	(kPa): 34	.0			g during s	shrinkage:	Major	r	
		ength after	(kPa): 34	.0	Shrinkage		g during s	-	Major	Г	
		ength after	(kPa): 34	.0	Shrinkage			-	Major	ſ	
		ength after	(kPa): 34		Shrinkag			-	Major	r 	
	Swell	ength after	(kPa): 34		Shrinkage			-	Major	r 	
Shrink S	Swell	ength after	(kPa): 34		Shrinkag			-	Major	r 	
Shrink S	Swell	ength after	(kPa): 34		Shrinkag			-	Major	r 	
Shrink S	10.0 _ · · · ·	ength after	(kPa): 34		Shrinkag			-	Major	r 	· · · · · · · · · · · · · · · · · · ·
Shrink S	10.0 _ · · · ·	ength after	(kPa): 34		Shrinkagı			-	Major	r 	
Shrink S	10.0 _ · · · ·	ength after	(KPa): 34		Shrinkag			-	Major	r 	· · · · · · · · · · · · · · · · · · ·
Shrink S	10.0 - · · · · 5.0 - · · ·	ength after	(kPa): 34		Shrinkag			-	Major	r 	· · · · · · · · · · · · · · · · · · ·
Shrink S	10.0 - · · · · 5.0 - · · ·	ength after	(KPa): 34		Shrinkagı			-	Major	r 	
Shrink S	10.0 - · · · · 5.0 - · · ·	ength after	(kPa): 34		Shrinkagı			-	Major	r 	· · · · · · · · · · · · · · · · · · ·
Shrink S	10.0 - · · · · · · · · · · · · · · · · · ·	ength after	(kPa): 34		Shrinkag			-	Major	r	· · · · · · · · · · · · · · · · · · ·
Shrink S	10.0 - · · · · · · · · · · · · · · · · · ·	ength after	(kPa): 34		Shrinkag			-	Major	r	
Shrink S	10.0 - · · · · · · · · · · · · · · · · · ·	ength after	(kPa): 34		Shrinkagı			-	Major	r	
Shrink S	10.0 - · · · · · · · · · · · · · · · · · ·	ength after	(KPa): 34	15.0	Shrinkagı			-	40.0	r 	50.0
Shrink S	10.0 - · · · · · · · · · · · · · · · · · ·				20.0		Sw el				50.0

Comments

APPENDIX C:

CSIRO Sheet BTF 18

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

GENERAL DEFINITIONS OF SITE CLASSES							
Class	Foundation						
А	Most sand and rock sites with little or no ground movement from moisture changes						
S	Slightly reactive clay sites with only slight ground movement from moisture changes						
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes						
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes						
E	Extremely reactive sites, which can experience extreme ground movement from moisture changes						
A to P	Filled sites						
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise						

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- · Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical - i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

Trees can cause shrinkage and damage

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

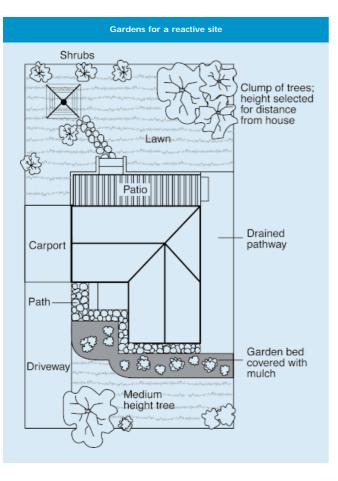
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS									
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category							
Hairline cracks	<0.1 mm	0							
Fine cracks which do not need repair	<1 mm	1							
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2							
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3							
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4							

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited