Residential Subdivision The Gardens - Stage 3 Site Classification

Calification .

Medowie Road, Medowie

NEW19P-0143F-AA 19 May 2022

GEOTECHNICAL I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING

19 May 2021

McCloy Project Management Pty Ltd Suite 2, Ground Floor, 317 Hunter Street NEWCASTLE NSW 2300

Attention: Mr Bryson Cox

Dear Sir,

RE: RESIDENTIAL SUBDIVISION – THE GARDENS – STAGE 3 688 TO 730 MEDOWIE ROAD, MEDOWIE SITE CLASSIFICATION (LOTS 301 TO 336)

Please find enclosed our geotechnical report for Stage 3 of "The Gardens" residential subdivision, located at Nos. 688 to 730 Medowie Road, Medowie.

The report provides site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs and Footings*', for Stage 3 (Lots 301 to 336), following completion of site regrade works.

If you have any questions regarding this report, please do not hesitate to contact Ben Bunting, Shannon Kelly, or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Jason Lee Principal Geotechnical Engineer

Table of Contents:

1.0		Introduction	1
2.0		Desktop Study	1
3.0		Field Work	1
4.0		Site Description	2
	4.1	Site Regrade Works	.2
	4.2	Surface Conditions	.3
	4.3	Subsurface Conditions	.5
5.0		Laboratory Testing	9
6.0		Site Classification to AS2870-20111	0
7.0		Limitations1	2

Attachments:

- Figure AA1: Site Plan and Approximate Test Locations
- Appendix A: Engineering Logs of Boreholes
- Appendix B: Results of Laboratory Testing
- Appendix C: CSIRO Sheet BTF 18 Foundation Maintenance and Footing Performance

1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this geotechnical report on behalf of McCloy Development Management Pty Ltd (McCloy), for Stage 3 of 'The Gardens' residential subdivision, located at Nos. 688 to 730 Medowie Road, Medowie.

Based on the brief and sales plan provided by McCloy, Stage 3 is understood to include 36 residential allotments (Lots 301 to 336).

The scope of work for the geotechnical investigation included providing site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs and Footings*', for Stage 3 following completion of site regrade works which included controlled filling of Lots 303 to 316, 319, 320, 327, 328, and 334 to 336.

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

2.0 Desktop Study

The scope of work has included a review of the following reports completed by Qualtest:

- Geotechnical Assessment, 'Proposed Residential Subdivision, Medowie Gardens, Medowie Road, Medowie, (Report Reference: NEW19P-0143-AA, dated 27 November 2019);
- Site Classification, 'Residential Subdivision, The Gardens Stage 1', (Report Reference: NEW19P-00143-AC, dated 1 July 2020); and,
- Level 1 Site Re-grade Assessment Report, 'The Gardens Subdivision Stage 3, Medowie Road, Medowie (KCE No. 21096)', (Report Reference: NEW21P-0009B-AA.rev1, dated 18 May 2022).

This report includes a summary of selected results from the previous reports where applicable.

3.0 Field Work

Field work investigations were carried out on 19 and 20 April 2022, comprising of:

- Excavation of 19 boreholes (BH301 to BH319) using a 5.0 tonne or 2.7 tonne excavator with a 300mm diameter auger, to depths ranging from 2.00m to 2.20m;
- Undisturbed samples (U50 tubes) were taken for subsequent laboratory testing; and,
- Boreholes were backfilled with the excavation spoil and compacted using the excavator auger and tracks.

Investigations were carried out by an experienced Geotechnical Engineer from Qualtest who located the boreholes, carried out the testing and sampling, produced field logs of the boreholes, and made observations of the site surface conditions.

Approximate borehole locations are shown on the attached Figure AA1.

Engineering logs of the boreholes are presented in Appendix A.

4.0 Site Description

4.1 Site Regrade Works

Initial Site Re-grade Works

Initial site re-grading works were conducted between 18 November 2021 and 22 February 2022, and included filling within all or portions of Lots 303 to 316 and 334 to 336.

Prior to filling, re-grade areas were stripped of topsoil and unsuitable material to expose the suitable natural foundation profile. Preparation works were then performed, which consisted of tining, re-conditioning and re-compaction of the stripped surface, prior to filling with approved site fill to design finish levels.

A number of steel straps connected to timber strainer posts were encountered within isolated areas of Lots 309, 313 and 316 during the initial site visit. As per recommendations provided, these timber posts, steel straps and any associated uncontrolled fill was removed to expose the underlying suitable natural soil profile. These excavations ranged in depths of between 1.2m to 1.5m, and were then backfilled in layers as part of the initial re-grade works.

Subsequent Site Re-grade Works

Following the initial re-grade works, a site visit was performed on 19 April 2022 as part of the Site Classification assessment field work. During site observations / boreholes performed across the development, two isolated areas of uncontrolled fill were identified, which were outside the extent of the initial site re-grading works.

The first area was located within an isolated portion on the boundary of Lot 319 & 320, and was believed to be uncontrolled fill associated with previous site activities. This uncontrolled fill was removed to expose the underlying suitable natural foundation profile (approximate depths of up to 1.5m), prior to being backfilled with approved site won material. These subsequent regrade works were performed on 21 April 2022.

The second area was located within an isolated portion on the boundary of Lot 327 & 328, and was believed to be uncontrolled fill associated with the backfill of a previous well structure. This uncontrolled fill was removed to expose the underlying suitable natural foundation profile surrounding the well structure (approximate depths of up to 3.4m). It was advised / understood that the well structure was then capped with approx. 0.4m of concrete, prior to being backfilled with approved site won material. These subsequent re-grade works for the site won soil backfill were performed on 2 May 2022.

Filling Method Performed

Filling was performed using site stockpiled material won from excavations cut from around the site. The fill material could generally be described as mixtures of Residual (CI-CH) Sandy CLAY, medium to high plasticity, red / brown / grey in colour, with fine to coarse grained Sand.

The approximate depth of fill placed ranged in the order of 0.1m to about 3.0m, with the deepest areas being within the northern embankment of the Detention Basin, backfill for adjacent sandstone block retaining wall, backfill following removal of uncontrolled fill associated with the well structure, and portion of Macadamia Circuit adjacent to the eastern embankment of the Detention Basin.

The approximate maximum depth of fill placed was in the order of:

- Lot 303 to 308 0.6m;
- Lot 309 1.5m;
- Lot 310 to 312 0.8m;
- Lot 313 1.5m;
- Lot 314 to 315 1.2m adjacent to Macadamia Circuit;
- Lot 316 1.5m;
- Lot 334 to 336 1.0m;
- Isolated area on boundary of Lot 319 & 320 1.5m;
- Isolated area on boundary of Lot 327 & 328 3.0m;
- Detention Basin 3.0m;
- Macadamia Circuit between approx. Ch. 1345m and 1510m 0.0m to 2.5m;
- Sandstone block retaining wall along northern boundary of Site 0.3m to 2.5m.

The fill was compacted in maximum lifts of 0.3m thickness. Any unsuitable or deleterious material within the fill was removed by hand or mechanical means prior to final compaction of the material.

As the geotechnical testing authority engaged for the project, Qualtest state that the filling performed for the re-grade areas within Stage 3 (as noted above and shown approximately on Figure AA1) was carried out to Level 1 criteria as defined in Clause 8.2 – Section 8 of AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".

The recommendations of this report are based on our understanding of lot regrade works from the Level 1 fill supervision by Qualtest, and placement of low reactivity topsoil material such that total depth of topsoil and uncontrolled fill does not exceed 0.4m. Qualtest should be informed without delay if additional earthworks are known to have been carried out.

During field investigations undertaken on19 and 20 April 2022, there was noted to be topsoil stockpiles on the frontages of Lots 317 to 321, and Lot 324, and scattered small stockpiles on a number of other lots within Stage 3. The lots have been classified based on the understanding that these stockpiles are to be removed prior to construction of residential footings.

4.2 Surface Conditions

The site is located east of Medowie Road, Medowie. The site comprises Stage 3 of the Medowie Gardens residential subdivision at 688 to 730 Medowie Rd, Medowie. The site comprises 36 proposed residential allotments and associated pavements, covering a total area of approximately 3.41ha. The site of the proposed development is shown on Figure AA1.

Stage 3 is bounded to the north by existing residential allotments, to the east and south by future or existing stages of The Gardens subdivision (future Stage 4 and Stage 1, respectively), and to the west by Medowie Road.

On the day of the investigation, stormwater systems had been constructed, and pavements had been constructed (but not sealed), and the site was judged to be reasonably well drained.

Photographs of the site taken on the day of the site investigations are shown below.

Photograph 1: From near south-western corner of Lot 301, facing northwest.

Photograph 2: From near south-western corner of Lot 301, facing north.

Photograph 3: From near eastern boundary of Lot 305, facing southwest.

Photograph 5: From near northern boundary of Lot 310, facing southwest.

Photograph 7: From near northern boundary of Photograph 8: From near northern boundary of Lot 313, facing east.

Photograph 4: From near eastern boundary of Lot 305, facing northwest.

Photograph 6: From near northern boundary of Lot 310, facing northwest.

Lot 313, facing southeast.

Photograph 9: From near eastern boundary of Lot 325, facing west.

Photograph 10: From near eastern boundary of Lot 325, facing northwest.

Photograph 11: From near south-eastern corner of Lot 331, facing north.

Photograph 13: From near eastern boundary of Lot 336, facing southwest.

4.3 Subsurface Conditions

Photograph 12: From near south-eastern corner of Lot 331, facing east.

Photograph 14: From near eastern boundary of Lot 336, facing west.

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet 9231 indicates the majority of the site to be underlain by the Permian Aged Tomago Coal Measures, which are characterised by Siltstone, Sandstone, Coal, Tuff and Claystone rock types. The western part of the site is indicated to be underlain by Quaternary aged alluvial deposits of gravel, sand, silt and clay.

Table 1 presents a summary of the typical soil types encountered on site during the field investigations, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the above geotechnical units at the borehole locations.

Unit	Soil Type	Description
1A	FILL – TOPSOIL	Sandy CLAY – low to medium plasticity, dark grey-brown, fine to medium grained sand, in places root affected, with some sticks.
1B	UNCONTROLLED FILL	Sandy GRAVEL – fine to medium grained, angular to sub- angular, pale grey, fine to coarse grained sand.
1C	CONTROLLED FILL	Sandy CLAY, CLAY – medium to high plasticity, pale brown to pale orange-brown with some red-brown with some dark grey, fine to coarse grained (mostly fine to medium grained) sand, trace fine to medium grained rounded to sub-angular gravel in places.
2	TOPSOIL	Sandy CLAY – low to medium plasticity, dark grey-brown, fine to medium grained (mostly fine grained) sand, root affected.
3	COLLUVIUM / SLOPEWASH	Sandy CLAY – low to medium plasticity, grey to dark grey- brown, fine to medium grained sand.
4	RESIDUAL SOIL	CLAY / Sandy CLAY – medium to high plasticity, pale brown to orange-brown, red-brown, with trace pale grey in places, trace fine to medium grained (mostly fine grained) sand, trace fine grained angular to sub-rounded gravel in places.
5	EXTREMELY WEATHERED (XW) ROCK with soil properties	Not encountered within depth of excavation during current investigation.

TABLE 1 – SUMMARY OF GEOTECHNICAL UNITS AND SOIL TYPES

No groundwater was encountered in the boreholes during the limited time that they remained open on the day of the field investigation.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

Location	Unit 1A FILL – Topsoil	Unit 1B Uncontrolled Fill	Unit 1C Controlled Fill	Unit 2 Topsoil	Unit 3 Colluvium /	Unit 4 Residual Soil	Unit 5 XW Rock					
	Depth in metres (m)											
	1		Current Ir	vestigation								
BH301	-	-	-	0.00 - 0.40	-	0.40 - 2.00	-					
BH302	-	-	-	0.00 - 0.30	0.30 - 0.40	0.40 - 2.00	-					
BH303	-	-	0.00 - 0.40	-	0.40 - 0.50	0.50 - 2.00	-					
BH304	0.00 - 0.20	-	0.20 - 0.55	-	-	0.55 - 2.00	-					
BH305	0.00 - 0.40	-	0.40 - 1.00	-	-	1.00 - 2.20	-					
BH306	-	-	_	-	-	0.00 - 2.00	-					
BH307	-	-	0.00 - 0.70	-	0.70 - 0.85	0.85 - 2.00	-					
BH308	-	-	0.00 - 0.50	-	-	0.50 - 2.00	-					
BH309	-	-	_	-	-	0.00 - 2.00	-					
BH310	-	-	_	-	-	0.00 - 2.00	-					
BH311	0.00 - 0.10	-	_	-	-	0.10 - 2.00	-					
BH312	-	-	_	-	-	0.00 - 2.00	-					
BH313	-	0.00 - 0.05	-	-	-	0.05 - 2.00	-					
BH314	-	-	_	0.00 - 0.30	-	0.30 - 2.00	-					
BH315	0.00 - 0.30	-	_	-	-	0.30 - 2.00	-					
BH316	0.00 - 0.30	-	_	-	_	0.30 - 2.00	_					

Location	Unit 1A FILL – Topsoil			-	Unit 3 Colluvium / Slopewash	Unit 4 Residual Soil	Unit 5 XW Rock				
	Depth in metres (m)										
BH317	-	-	-	0.00 - 0.40	-	0.40 - 2.00	-				
BH318	-	-	-	0.00 - 0.40	-	0.40 - 2.00	-				
BH319	0.00 - 0.25	-	0.25 - 1.00	-	-	1.00 - 2.00	-				
		Previous Ir	vestigation (NEW19	P-0143-AC, dated	l 1 July 2020)						
TP110	-	-	-	0.00 - 0.25	0.25 - 0.80	0.80 - 1.80	1.80 - 2.00				
TP111	-	-	-	0.00 - 0.20	0.20 - 0.50	0.50 - 2.00	-				
TP112	-	-	-	0.00 - 0.20	0.20 - 0.60	0.60 - 2.00	-				
TP113	-	-	-	0.00 - 0.25	-	0.25 - 2.00	-				
TP114	-	-	-	0.00 - 0.30	-	0.30 - 2.00	-				
		Previous Inves	tigation (NEW19P-0	143-AA, dated 27	November 2019)						
TP01	-	-	-	0.00 - 0.20	0.20 - 0.50	0.50 - 1.90	-				
TP03	-	-	-	0.00 - 0.30	-	0.30 - 2.00	-				
TP04	-	-	-	0.00 - 0.30	0.30 - 0.40	0.40 - 1.95	-				
TP10	-	-	-	0.00 - 0.25	0.25 - 0.60	0.60 - 1.95	-				
TP11	-	0.00 - 0.10	-	0.10 - 0.30	0.30 - 0.45	0.45 - 1.90^	-				
TP12	_	-	-	0.00 - 0.35	0.35 - 0.45	0.45 - 1.90^	-				
TP13	-	-	-	0.00 - 0.15	-	0.15 - 1.95	-				

5.0 Laboratory Testing

Samples collected during the field investigations were returned to our NATA accredited Newcastle Laboratory for testing which comprised of:

• (20 no.) Shrink / Swell tests.

Results of the laboratory testing are included in Appendix B, with a summary of the Shrink/Swell and Atterberg Limits test results presented in Table 3 and Table 4 respectively.

Location	Depth (m)	Material Description	Iss (%)
		Current Investigation	
BH301	0.60 - 0.75	(CI) CLAY	1.7
BH302	0.90 - 1.05	(CH) CLAY	2.9
BH303	0.05 - 0.25	FILL: (CI) Sandy CLAY	1.3
BH304	0.40 - 0.55	FILL: (CI) Sandy CLAY	0.9
BH305	0.70 - 0.85	FILL: (CH) Sandy CLAY	1.7
BH306	0.80 - 0.95	(CH) CLAY	1.4
BH307	0.30 - 0.45	FILL: (CH) CLAY	1.3
BH308	0.70 - 0.90	(CI) Sandy CLAY	1.6
BH309	0.50 - 0.75	(CI) Sandy CLAY	1.3
BH310	0.80 - 1.05	(CI) CLAY	0.5
BH311	0.80 - 1.00	(CH) CLAY	1.8
BH312	0.60 - 0.80	(CH) CLAY	1.7
BH313	0.50 - 0.70	(CI) Sandy CLAY	0.8
BH314	0.70 - 0.90	(CH) CLAY	1.7
BH315	0.60 - 0.80	(CH) CLAY	1.5
BH316	0.50 - 0.85	(CH) CLAY	2.1
BH317	0.60 - 0.80	(CH) CLAY	1.9
BH318	0.60 - 0.95	(CH) CLAY	1.9
BH319	0.50 - 0.65	FILL: (CH) Sandy CLAY	1.1
BH319	1.00 - 1.20	(CH) Sandy CLAY	1.2
	Previous Investi	gation (NEW19P-0143-AC, dated 1 July 20	20)
TP110	0.90 - 1.05	(CH) CLAY	1.9

Location	Depth (m)	Material Description	I _{ss} (%)							
TP111	0.30 - 0.50	(CI) Sandy CLAY	1.4							
TP112	0.70 - 1.00	(CH) CLAY	2.2							
TP113	0.80 - 1.00	(CH) CLAY	2.1							
Р	Previous Investigation (NEW19P-0143-AA, dated 27 November 2019)									
TP03	0.40 - 0.50	(CH) CLAY	2.4							
TPO4	0.60 - 0.80	(CH) CLAY	2.8							
TP10	0.30 - 0.55	(CL) CLAY	1.7							
TP11	0.45 - 0.70	(CH) CLAY	1.2							
TP12	0.85 - 1.05	(CH) CLAY	2.4							
TP13	0.30 - 0.50	(CH) CLAY	1.6							

Location	Sample Depth (m)	Material Description	Liquid Limit (%)	Plastic limit (%)	Plasticity Index (%)	Linear Shrinkage (%)					
	Previous Investigation (NEW19P-0143-AC, dated 1 July 2020)										
TP114	0.40 - 0.50	(CH) CLAY	47	20	27	11.0					
	Previous Investigation (NEW19P-0143-AA, dated 27 November 2019)										
TP01	0.40 - 0.50	(CL) CLAY	30	13	17	7.0					

6.0 Site Classification to AS2870-2011

Based on the results of the field work and laboratory testing, residential lots located within Stage 3 of The Gardens residential subdivision located at 688 to 730 Medowie Road, Medowie, as shown on Figure AA1, are classified in their current condition in accordance with AS2870-2011 'Residential Slabs and Footings', as shown in Table 5.

TABLE 5 – SITE CLASSIFICATION TO AS2870-2011

Stage	Lot Numbers	Site Classification
2	301, 302, 321 to 326, and 329 to 333	м
5	303 to 320, 327, 328, and 334 to 336	H1

A characteristic free surface movement in the range of 20mm to 40mm is estimated for lots classified as **Class 'M'**.

A characteristic free surface movement in the range of 40mm to 60mm is estimated for lots classified as **Class 'H1'**.

The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement.

If site re-grading works involving cutting or filling are performed after the date of this assessment the classification may change and further advice should be sought.

Final site classification will be dependent on the type of fill and level of supervision carried out. Re-classification of lots should be confirmed by the geotechnical authority at the time of construction following any site re-grade works.

Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the natural clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches;
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;
- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 'Residential Slabs and Footings' is essential, in particular Section 5.6, 'Additional requirements for Classes M, H1, H2 and E sites' including architectural restrictions, plumbing and drainage requirements; and,
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide", a copy of which is attached in Appendix C.

All structural elements on all lots regardless of their site classification should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, or other potentially deleterious material.

If any areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

7.0 Limitations

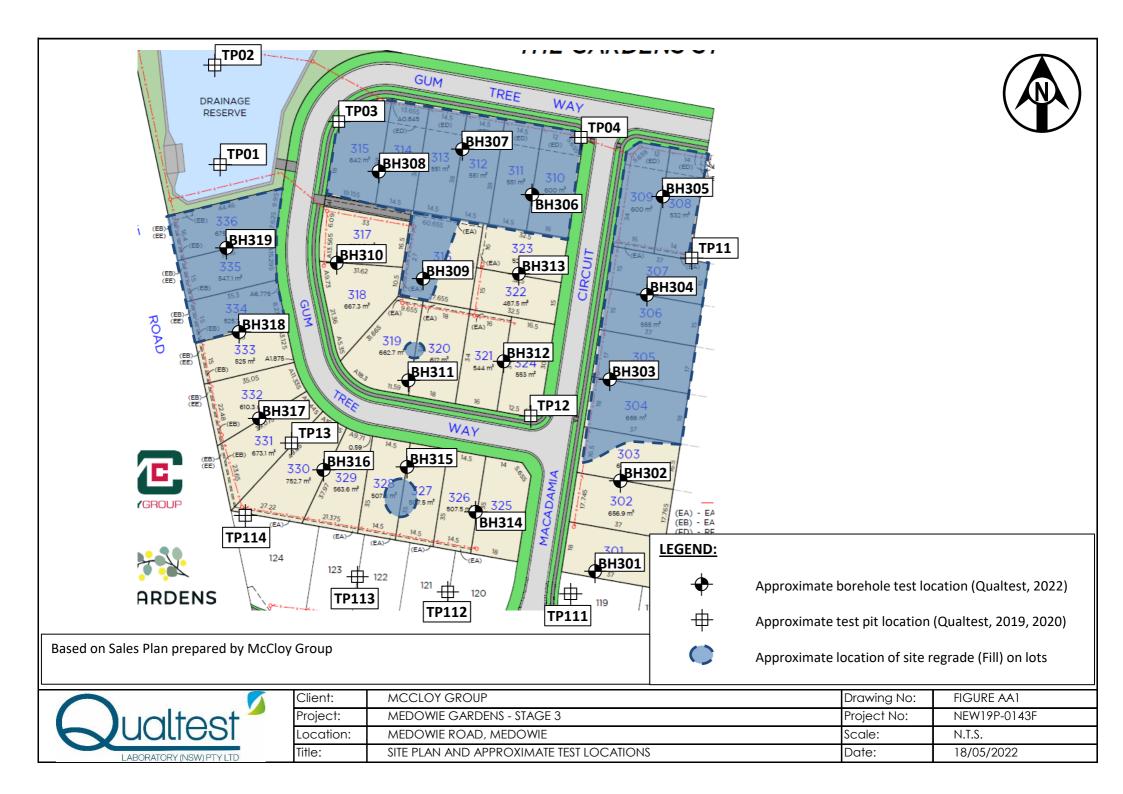
The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete borehole locations. It should be noted that subsurface conditions between and away from the borehole locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Ben Edwards, Shannon Kelly or the undersigned.


For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

Esc les

Jason Lee Principal Geotechnical Engineer

FIGURE AA1:

Site Plan and Approximate Test Locations

APPENDIX A:

Engineering Logs of Boreholes

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH301

1 OF 1

NEW19P-0143F

BB

Drilling and Sampling			g and Sampling Material description and profile information				Material description and profile information				d Test				
ПОЧ	TER		RL	DEPTH	UHC DHC	ICATION BOL	MATERIAL DESCRIPTION: Soil type, plasticity/partic		TENCY	Type	Result	Structure and addition observations			
METHOD	WATER	SAMPLES	(m)	(m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	characteristics,colour,minor components	MOISTURE	CONSISTENCY	Test Type	Res				
						CL	TOPSOIL: Sandy CLAY - low to medium plasticity dark grey-brown, fine to medium grained (mostly grained) sand, root affected to 0.20m. 0.40m CLAY - medium plasticity, orange-brown, trace fir to medium grained (mostly fine grained) sand.	fine ^ ^ ≥	St -	- HP	190	TOPSOIL RESIDUAL SOIL			
	Not Encountered	0.60m U50 0.75m		-		CI			VSt	- HP	200				
AD/T	Not Enco						1. <u>0</u> - - -				~ M M	VSt	HP	250	
				1. <u>5</u> - - - 2.0		СН	1.50m CLAY - medium to high plasticity, orange-brown trace red-brown.			HP	450				
				-	- -		Hole Terminated at 2.00 m								
<u>Wat</u> ▼	Wat (Dat Wat Wat Wat	er Level e and time sl er Inflow er Outflow anges radational or	nown)	I Notes, Sar U₅ CBR E ASS ASS B Field Test	50mm Bulk s Envirc (Glass Acid S (Plasti Bulk S	i Diame ample f onmenta s jar, se Sulfate \$	ter tube sample Cor for CBR testing S al sample F aled and chilled on site) St Soil Sample VSt air expelled, chilled) H Eb	Soft Firm Stiff Very S Hard Friable	üff	<2 2 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp, Plastic Limit WL Liquid Limit			

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH302

1 OF 1

NEW19P-0143F

BB

DR		YPE:	5 T(ONNE E	XCAV	ATOR	SURFA	CE RL:					
во	REH	OLE DIAM	ETER		300 m	m	DATUN						
	Drill	ing and Sam	npling				Material description and profile information		1		Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/p characteristics,colour,minor components	particle	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	TOPSOIL: Sandy CLAY - low to medium plas dark grey, fine to medium grained sand, root affected, with some sticks.	sticity,	M ~ W _P				TOPSOIL
				-		CL	0.30m Sandy CLAY - low to medium plasticity, grey, 0.40m medium grained sand.	fine to	× M				SLOPE WASH
				0.5		СІ	 CLAY - medium plasticity, orange-brown, trac to medium grained sand. 	ce fine	M > W _P	St	HP	170	RESIDUAL SOIL
	be			-			0.85m				HP	210	
AD/T	Not Encountered	0.90m U50 1.05m		- 1. <u>0</u> -			CLAY - medium to high plasticity, orange-brow some red-brown, trace fine to medium graine (mostly fine grained) sand.	wn with d			HP	250	
				- - 1. <u>5</u>		СН	Orange-brown and red-brown.		$M \sim W_P$	VSt	HP	350 360	
							2.00m				HP	400	
					·/////		Hole Terminated at 2.00 m						
				-									
	Wat (Dat Wat	er Level e and time sh er Inflow er Outflow	iown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate \$	ter tube sample for CBR testing al sample aled and chilled on site)	S S F F St S VSt V H F	ncy Yery Soft Soft Stiff Yery Stiff Iard Friable		<2 25 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
<u>ətra</u>	tra D	anges radational or ansitional stra efinitive or dis rata change	ta	PID DCP(x-y) HP	<u>:s</u> Photo Dynar	ionisatio nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L MD D VD	L N D	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH303

1 OF 1

NEW19P-0143F

BB

		OLE DIAME			300 m		DATI Material description and profile information				Field	d Test	
			"'Y			z	אומנפרומו עפסטוףנוטרו מווע אוטוווש ווווטורוומנוטוו						
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additionations
		0.05m U50 0.25m				CI	FILL: Sandy CLAY - medium plasticity, pale brown with some grey, fine to coarse grain fine to medium grained) sand.		~ ₩	VSt	HP	350	FILL - CONTROLLED
				- 0.5		 CI	0.40m Sandy CLAY - medium plasticity, dark grey 0.50m fine grained sand.			St	HP		SLOPE WASH /
		0.70m		-		 CI	Sandy CLAY - medium plasticity, pale brow orange-brown, fine grained sand.	 /n to pale	M > Wp	St - VSt	HP	210	RESIDUAL SOIL
	untered	U50 0.85m		-			0.90m				HP	190	
AU/I	Not Encountered			1. <u>0</u> - -			with some red-brown, trace fine grained sa			VSt	HP	300	
				1. <u>5</u> -		СН	Pale orange-brown and red-brown, trace fi angular gravel.	ne grained	M ~ W	н	HP	410	
				- 2.0			Red-brown.				HP	500	
				-			Hole Terminated at 2.00 m						
	Wat (Dat Wat	er Level te and time show er Inflow er Outflow anges	vn)	lotes, Sar U₅ BR E SS B	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se ulfate \$ c bag, a	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	Very Soft Soft Firm Stiff Very Stiff Hard Friable		<2 25 50 10 20 >2	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional strata efinitive or distic rata change		Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	<u>Density</u>	V L MC D	Lo D M	ery Lo bose lediun ense	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH304

1 OF 1

NEW19P-0143F

BB

BO		OLE DIAM		:	300 m	m	DAT	JM:					
	Drill	ing and Sam	pling				Material description and profile information			1	Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		СІ	FILL-TOPSOIL: Sandy CLAY - medium pla dark grey-brown, fine to medium grained s	asticity, and.					FILL - TOPSOIL
		0.40m U50				CI	0.20m	um	_ ⊸ × ⊳	VSt	HP	350	FILL - CONTROLLED
	ired	0.55m		-			0.55mCLAY - medium to high plasticity, orange-t some red-brown, trace fine to medium grai trace fine to medium grained sub-rounded sub-angular gravel.	ned sand,			HP	450	RESIDUAL SOIL
AD/I	Not Encountered					СН	Red-brown and orange-brown.		M < w _p	н	HP	500	
				- - - 2.0			2.00m				HP	480	
							Hole Terminated at 2.00 m						
				-									
				-									
	SEND:		T	Notes, Sa U ₅₀			t <u>s</u> ter tube sample	Consiste	ency /ery Soft			CS (kPa)	Moisture Condition D Dry
Wat		er Level		CBR	Bulk s	ample f	or CBR testing	S S	Soft		25	5 - 50	M Moist
_	(Dat	e and time sh	· ·	E	(Glass	jar, se	al sample aled and chilled on site)	St S	Firm Stiff		10) - 100)0 - 200	W Wet W _p Plastic Limit
		er Inflow er Outflow		ASS	(Plasti	c bag, a	Soil Sample air expelled, chilled)	нн	/ery Stiff Hard)0 - 400 100	W _L Liquid Limit
Stra	ta Cha			B Field Test	Bulk S	ample		Fb F	riable V	V	ery Lo	ose	Density Index <15%
	tra D	radational or ansitional strat efinitive or dis rata change	ta	PID DCP(x-y) HP	Photoi Dynan	nic pene	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L ME D	Lo D M	oose	n Dense	Density Index 15 - 35%

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH305

1 OF 1

NEW19P-0143F

BB

WATER	ing and Sam	RL (m)				Material description and profile information				Field		
WATER	SAMPLES									Field	d Test	
			DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
			-		CI	FILL-TOPSOIL: Sandy CLAY - medium pla brown and grey-brown, fine to medium grai		M < w _p				FILL - TOPSOIL
red	0.70m U50 0.85m				сн	FILL: Sandy CLAY - medium to high plastic orange-brown with some red-brown, fine to grained sand, with some fine to medium gr sub-rounded to sub-angular gravel.	coarse			HP	500	FILL - CONTROLLED
Not Encounter			1. <u>0</u> - - 1. <u>5</u> -		сн	Sandy CLAY - medium to high plasticity, re trace orange-brown and pale grey to white, coarse grained sand, with some fine to me	fine to dium	M ∼ Wp	н	HP	>600 · 550	RESIDUAL SOIL 7 POSSIBLE FILL - CONTROLLED
			- 2. <u>0</u> -		сн	CLAY - medium to high plasticity, red-brow grey, trace fine to medium grained sand.	 n and pale	M < W _P		HP		RESIDUAL SOIL
			-			Hole Terminated at 2.20 m						
(Dat Wat Wat t <u>a Cha</u> G tra	te and time sh er Inflow er Outflow anges radational or ansitional strat	own)	U ₅₀ CBR E ASS B <u>Field Test</u> PID	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S <u>s</u> Photoi	Diame ample f nmenta i jar, se culfate S c bag, a ample onisatio	er tube sample or CBR testing I sample aled and chilled on site) ioil Sample ir expelled, chilled) n detector reading (ppm)	VS V S S F F St S VSt V H H	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable V L	Vi	25 25 50 20 20 20 20 20 20 20 20 20 20 20 20 20	25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15% Density Index 15 - 35%
e	er Wat (Dat Wat Wat a Cha G tra	Palational or transitional strat	U50 0.85m Deal U50 0.85m	0.70m - U50 - 0.85m - 1.0 - 0.85m - 1.0 - 0.85m - 1.0 - 0.85m - 1.0 - 1.0 - 0.85m - 1.0 - 1.10 - 0.85m - 1.0 - 1.10 - 1.15 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.5 - 1.6 - 1.7 - 1.6 - 1.7 - 1.8 - 1.9 - 1.15 - 1.15 - 1.6 <	Paymonul U50 0.85m U50 0.85m U50 1.0 1.0 1.0 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	0.70m CH 0.50 CH 0.85m 1.0 1.0 CH 1.0 CH 1.0 CH 1.10 CH 1.10	0.70m 0.5 orange-brown with some frect brown, fine to ingrined sand, with some frect brown, fine to ingrined sand, with some frect brown, fine to ingrined sand, with some frect brown and pale grey to white, coarse grained sand, with some frect brown and pale grey to white, coarse grained sub-rounded to sub-angular gravel 0.70m 1.0 1.0 Sandy CLAY - medium to high plasticity, retrace orange-brown and pale grey to white, coarse grained sand, with some frect brown grained sub-rounded to sub-angular gravel 0.70m 1.5 CH Red-brown. 1.5 CH CH CH 2.00m CLAY - medium to high plasticity, red-brow grey, trace fine to medium grained sand. CH 2.0 CH 2.0m CLAY - medium to high plasticity, red-brow grey, trace fine to medium grained sand. 2.0 CH 2.0m CLAY - medium to high plasticity, red-brow grey, trace fine to medium grained sand. 2.0 CH Somm Diameter tube sample CBR Built sample for CBR testing 2.0 E Environmental sample CBR Built sample Water Level Cub and time shown Class jar; sealed and chilled on site) Water Inflow Acd Saltate Soil Sample EHOL Field Tests Water Inflow Bailt Sample Field Tests Cradational or transitional strata	0.70m 0.5 orange-brown with some red-brown, fine to coarse grained sand, with some fine to medium grained sub-rounded to sub-angular gravel. 0.70m 0.6 0.4 0.6 0.85m 1.0 0.7 0.7 1.0 0.7 0.7 0.7 0.85m 1.0 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.0 0.7 0.7 0.7 1.10 0.7 0.7 0.7 1.5 0.7 0.7 0.7 1.5 0.7 0.7 0.7 1.5 0.7 0.7 0.7 1.5 0.7 0.7 0.7 1.5 0.7 0.7 0.7 1.5 0.7 0.7 0.7 <t< td=""><td>0.70m 0.5 orange-brown with some red-brown, fine to ocaine grained sand, with some fine to medium grained sub-rounded to sub-angular gravel. 0.70m U50 0.5 0.85m CH </td><td>0.5 0.5 orange-brown with some red-brown, fine to coarse graned sub-rounded to sub-angular gravel. 0.70m US0 0.6 - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - - 10 - - - - - 10 - - - - - 10 - - - - - 200 - -<!--</td--><td>0.70m 0.6 0.6 0.70m 0.7</td><td>0.70m 0.5 orange-brown with some fine to charse graned sand, with some fine to medium grained sand. HP 500 0.50m 0.5 CH Sandy CLAY - medium to high plasticity, red-brown trace orange-brown and paic gray to white, fine to carse graned sand, with some fine to medium grained sand, with some fine to medium grained sand, with some fine to medium grained sand. HP 550 2.0 - - 2.00 - L HP 550 2.0 - - CAH - HP 560 - HP 560 2.0 - - 2.00 - CAH - HP 560 -</td></td></t<>	0.70m 0.5 orange-brown with some red-brown, fine to ocaine grained sand, with some fine to medium grained sub-rounded to sub-angular gravel. 0.70m U50 0.5 0.85m CH	0.5 0.5 orange-brown with some red-brown, fine to coarse graned sub-rounded to sub-angular gravel. 0.70m US0 0.6 - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 0.50 - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - 10 - - - - - 10 - - - - - 10 - - - - - 10 - - - - - 200 - - </td <td>0.70m 0.6 0.6 0.70m 0.7</td> <td>0.70m 0.5 orange-brown with some fine to charse graned sand, with some fine to medium grained sand. HP 500 0.50m 0.5 CH Sandy CLAY - medium to high plasticity, red-brown trace orange-brown and paic gray to white, fine to carse graned sand, with some fine to medium grained sand, with some fine to medium grained sand, with some fine to medium grained sand. HP 550 2.0 - - 2.00 - L HP 550 2.0 - - CAH - HP 560 - HP 560 2.0 - - 2.00 - CAH - HP 560 -</td>	0.70m 0.6 0.6 0.70m 0.7	0.70m 0.5 orange-brown with some fine to charse graned sand, with some fine to medium grained sand. HP 500 0.50m 0.5 CH Sandy CLAY - medium to high plasticity, red-brown trace orange-brown and paic gray to white, fine to carse graned sand, with some fine to medium grained sand, with some fine to medium grained sand, with some fine to medium grained sand. HP 550 2.0 - - 2.00 - L HP 550 2.0 - - CAH - HP 560 - HP 560 2.0 - - 2.00 - CAH - HP 560 -

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH306

1 OF 1

NEW19P-0143F

BB

BO				:	300 m	m	DATU	JM:				. <u> </u>	
	Drill	ing and San	npling	1			Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
		0.80m				СІ	CLAY - medium plasticity, pale brown, with to medium grained (mostly fine grained) sa 0.40m CLAY - medium to high plasticity, pale orar with some red-brown, with some fine to me grained (mostly fine grained) sand.	nd. 	_	VSt	HP	280	RESIDUAL SOIL
AD/T	Not Encountered	U50 0.95m		- 1. <u>0</u> - - 1. <u>5</u> -		сн	1.00m CLAY - medium to high plasticity, red-brow fine to medium grained (mostly fine grained sub-angular to sub-rounded gravel. Red-brown with some pale grey.	n, trace 1)	$M \sim W_p$	Н	HP HP	500 500 530	
				2.0			^{2.00m} Hole Terminated at 2.00 m		M < W	H / Fb			
<u>Wat</u> ▼	Wat (Dat Wat	er Level te and time sh er Inflow er Outflow anges	iown)	Notes, Sau U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	i Diame ample f onmenta s jar, se Sulfate \$	∑ ter tube sample or CBR testing il sample aled and chilled on site) toil Sample air expelled, chilled)	S S F F St S VSt N H F	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable		<2 25 50 10 20	<u>CS (kPa)</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp, Plastic Limit WL Liquid Limit
	G tra D	radational or ansitional stra efinitive or dis rata change	ta	Field Test PID DCP(x-y) HP	: <u>s</u> Photo Dynar	ionisatio nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MD D) M D	ery Lo bose lediun ense ery Do	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH307

1 OF 1

NEW19P-0143F

BB

во		OLE DIAM		:	300 m	m	DATU	FACE RL: JM:			1		
	Dril	ling and Sam	pling				Material description and profile information		-	1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-			FILL: CLAY - medium to high plasticity, red and pale orange-brown to pale brown, with to coarse grained (mostly fine grained) san	some fine	M < Wp	н	HP	>600	FILL - CONTROLLED
		0.30m U50		-		СН					HP	450	
		<u>0.45m</u>		0.5					M ~ Wp	VSt - H	ΗP	410	
	pe			-			0.70m Sandy CLAY - medium plasticity, dark grey fine to medium grained (mostly fine grained			St	HP	180	
AD/I	Not Encountered	1.00m U50		1.0			CLAY - medium plasticity, pale brown to pa orange-brown, trace fine grained sand.	lle	M > W _P		HP	300	RESIDUAL SOIL
		1.15m		-		CI							
				- 1. <u>5</u> -			1.40m Sandy CLAY - medium plasticity, red-brown pale brown, fine to coarse grained sand.			VSt	HP	350	
				-		CI			M ~ K		HP	300	
				2.0			2.00m Hole Terminated at 2.00 m						
				-									
	Wat (Da Wat	er Level te and time sh ter Inflow ter Outflow anges	own)	Notes, Sa U ₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate S	s ter tube sample or CBR testing I sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	ency /ery Soft Soft Firm Stiff /ery Stiff Hard Friable		<: 2! 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
	G tra D	radational or ansitional strat efinitive or dis rata change	ta	Field Test PID DCP(x-y) HP	i <u>s</u> Photoi Dynar	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MI D VE	La D M D	ery Lo bose lediur ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH308

1 OF 1

NEW19P-0143F

BB

		YPE: OLE DIAM		ONNE E :	300 m		DAT	FACE RL: JM:					
	Drill	ing and Sam	pling	1			Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CI	FILL: CLAY - medium plasticity, brown with red-brown, with some fine to medium grain		M < w _p	н	HP		FILL - CONTROLLED
				- 0.5			0.50m		M ~ WP	VSt - H	HP	380	
		0.70m		-		CI	Sandy CLAY - medium plasticity, pale orar to pale brown, fine to medium grained sand	 ge-brown 1.			HP	300	RESIDUAL SOIL
F	Not Encountered	U50 0.90m				CI	Sandy CLAY - medium plasticity, pale orar to pale brown, fine to coarse grained (mos medium grained) sand, trace fine to mediu sub-rounded to sub-angular gravel.	tly fine to	– ⊸ × E				
AD/T	Not En			1. <u>0</u> - - 1.5		СН	1.00m Network Control of the second secon	ned sand,	~ wp	VSt	HP	330	
							Red-brown trace pale orange-brown.		W		HP	350	
				-			Hole Terminated at 2.00 m						
	Wat (Dat Wat	er Level te and time sh er Inflow er Outflow	own)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate S	ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt N H H	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable		<2 2 50 10 20	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	Moisture Condition D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit
<u>ətra</u>	G tra D	anges radational or ansitional stra efinitive or dis rata change	ta	Field Test PID DCP(x-y) HP	<u>s</u> Photoi Dynan	onisatio	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VE	Lo M D	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

BH309

1 OF 1

NEW19P-0143F

LOGGED BY:

PAGE:

DATE:

JOB NO:

BB 19/4/22

		TYPE: Ole diam		ONNE E :	XCAV/ 300 m		SURI DATI	FACE RL: JM:	:				
	Dril	ling and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additional observations
		0.50m U50 0.75m				CI	Sandy CLAY - medium plasticity, pale orar fine to medium grained sand.	ge-brown,	M ~ Wp	VSt	HP	300	RESIDUAL SOIL / POSSIBLE FILL - CONTROLLED
AD/T	Not Encountered			- 1.0_ - - - - 1.5_ -		СН	0.90m Sandy CLAY - medium to high plasticity, re with some pale orange-brown to pale brow coarse grained sand, trace fine to medium sub-rounded to sub-angular gravel.	n, fine to	M < Wp	H / Fb	HP	580	RESIDUAL SOIL
							2.00m Hole Terminated at 2.00 m			н	HP	530	
<u>Wa</u> ▼	(Da (Da Wa G G D	ter Level te and time sh ter Inflow ter Outflow	iown) ta	Notes, Sa U ₅₀ CBR E ASS B Field Test PID DCP(x-y) HP	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S S Photoi Dynan	Diame ample t nmenta jar, se sulfate \$ c bag, c bag, ample onisationic pen	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)	S F St VSt H	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable V L ME D V V	Vi La D M	<2	n Dense	D Dry M Moist W Wet Wp Plastic Limit WL Liquid Limit Density Index <15%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH310

1 OF 1

NEW19P-0143F

BB

во	REH	OLE DIAM	ETER		300 m	m	DATU	JM:					
	Drill	ing and Sam	pling	-1			Material description and profile information		1	1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen	y/particle ts	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.80m U50 1.05m				СІ	CLAY - medium plasticity, pale brown to pa orange-brown, fine to medium grained (mo grained) sand.	n and pale (mostly ained d-brown wn, fine to ned)	M < Wp	H/Fb	HP	450 500 500	RESIDUAL SOIL
				-			Hole Terminated at 2.00 m						
<u>Wat</u> ▼	Wat (Dat Wat Wat Wat	er Level te and time sh er Inflow er Outflow	own)	<u>Notes, Sa</u> U₅₀ CBR E ASS B <u>Field Test</u>	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se culfate \$ c bag, a ample	er tube sample or CBR testing Il sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	/ery Soft Soft Stiff /ery Stiff lard Friable V	V	<: 2! 50 10 20 >4 ery Lo	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400 pose	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%
	D	ansitional strat efinitive or dist rata change		PID DCP(x-y) HP	Dynan	nic pen	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)		L MI D VE	D M D	ense	n Dense ense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH311

1 OF 1

NEW19P-0143F

BB

		YPE: OLE DIAM		ONNE E ::	300 m		DAT	FACE RL: JM:	1				
	Drill	ing and San	npling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componer		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.80m U50 1.00m				CL	FILL-TOPSOIL: Sandy CLAY - low to medi plasticity, dark grey-brown, fine to coarse of (mostly fine to medium grained) sand, with sticks. Sandy CLAY - medium plasticity, red-brow grained sand.	rained some 	M ~ Wp	VSt - H	HP	300 410 500 430	FILL - TOPSOIL
				-			Hole Terminated at 2.00 m						
LEC Wat	Wat (Dat	er Level te and time sh er Inflow	nown)	- - - - - - - - - - - - - - - - - - -	50mm Bulk s Enviro (Glass Acid S	i Diame ample f onmenta s jar, se Sulfate \$	ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample	S S F I St S VSt	Very Soft Soft Firm Stiff Very Stiff		<2 25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400	D Dry M Moist W Wet W _p Plastic Limit
<u>Stra</u>	i ta Ch a G tra D	er Outflow anges radational or ansitional stra efinitive or dis rata change		B PID DCP(x-y) HP	Bulk S S Photo Dynar	Sample ionisationisation	air expelled, chilled) on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	1	Hard Friable V L MI D VD	La D M D	ery Lo oose	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH312

1 OF 1

NEW19P-0143F

BB 19/4/22

20				•	300 m		DATU Material description and profile information	5111.				ا ۲۰۰۰	
	Driii	ing and San	npling				Material description and profile information			I	Field	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and addition observations
				-		CI	Sandy CLAY - medium plasticity, pale brov medium grained (mostly fine grained) sand		M > Wp	VSt	HP	230	RESIDUAL SOIL
		<u>0.60m</u> U50 0.80m		0.5			CLAY - medium to high plasticity, red-brow some pale orange-brown, trace fine to med grained sand.	n with dium			HP	480	
AD/T	Not Encountered	0.0011		- 1. <u>0</u> -		СН	Red-brown trace pale orange-brown, with s to coarse grained sand, trace fine grained sub-angular gravel.		M < w _p	н	HP	500	
				- 1. <u>5</u> -		CI	Sandy CLAY - medium plasticity, red-brow some pale grey trace pale orange-brown, f coarse grained (mostly fine to medium grai sand, with some fine to medium grained su to sub-rounded gravel.	ine to ined)	-	H / Fb		430	
				2.0			^{2.00m} Hole Terminated at 2.00 m				HP	550	
				-									
	Wat (Dat Wat	er Level e and time sl er Inflow er Outflow anges	· ·	Notes, Sa U₅ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate S	S ter tube sample or CBR testing I sample aled and chilled on site) toil Sample air expelled, chilled)	S S F F St S VSt N H H	/ery Soft Soft Firm Stiff /ery Stiff Hard Friable	:	<2 25 50 10 20 >2	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra	radational or ansitional stra efinitive or dis	ita	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME	Lo	ery Lo bose ediun	oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH313

1 OF 1

NEW19P-0143F

BB 19/4/22

BO	REH	OLE DIAM	ETER	:	300 m	m	DATU	IM:					
	Drill	ing and Sam	pling	-1			Material description and profile information			1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
AD/T	Not Encountered	0.50m U50 0.70m				CI	0.05m FILL: Sandy GRAVEL - fine to medium gra angular to sub-angular, pale grey, fine to construct the sand. Sandy CLAY - medium plasticity, pale brown medium grained (mostly fine grained) sand 0.75m Sandy CLAY - medium plasticity, red-brown brown, fine to coarse grained sand, with so grained rounded to sub-angular gravel. Red-brown trace pale brown. Red-brown with some pale grey, with some grained angular gravel. 2.00m Hole Terminated at 2.00 m	n, fine to	M < Wp	- VSt	HP HP HP		FILL - FORMER STOCKP AREA RESIDUAL SOIL
<u>Wat</u> ▼	Wat (Dat ∙ Wat	er Level te and time sh er Inflow er Outflow anges	own)	Notes, Sar U₅₀ CBR E ASS	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, se sulfate S	Seter tube sample or CBR testing il sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F Fb F	/ery Soft Soft Tirm Stiff /ery Stiff lard Tirable		<2 25 50 10 20 >4	CS (kPa) 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	G tra D	radational or ansitional strat efinitive or dist rata change	a	Field Test PID DCP(x-y) HP	Photoi Dynan	nic pene	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L MC D VD	Lo M D	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH314

1 OF 1

NEW19P-0143F

BB

	REH	YPE: Ole diam	ETER	ONNE E		300 mm DATUM:							
	Drill	ling and Sam	pling				Material description and profile information		-		Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	TOPSOIL: Sandy CLAY - low plasticity, dar grey-brown, fine to medium grained (mostly grained) sand, root affected.		M ~ Wp				TOPSOIL
				- 0.5_ -		CI	Sandy CLAY - medium plasticity, pale brow grained sand.	— <u>—</u> — — n, fine	M > Wp	St	HP	150	RESIDUAL SOIL
١T	Not Encountered	0.70m U50 0.90m					0.70m CLAY - medium to high plasticity, red-brow orange-brown to pale brown, with some fin medium grained sand.	n and pale e to		VSt	HP	320	
AD/T	Not Er			-		СН	Trace fine grained rounded to sub-angular	gravel.	M ~ Wp		HP	410	
				- - -						VSt - H	HP	380	
							2.00m				HP	390	
				-			Hole Terminated at 2.00 m						
LEC	SEND:							Consiste				CS (kPa	
▼	Water Level CB Water Level CB E Uate and time shown) Water Inflow Water Outflow Strata Changes Gradational or transitional strata Definitive or distict DC		evel CBR Bulk sample f E Environmenta (Glass jar, se flow ASS Acid Sulfate S (Plastic bag, a				aled and chilled on site)	S S F F St S VSt V H F	Very Soft Soft Firm Stiff Very Stiff Hard Friable		25 50 10 20 >4	25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
				Field Test PID DCP(x-y) HP	Photoi Dynan	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	Density V L MD D VD			ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH315

1 OF 1

NEW19P-0143F

BB

BO						300 mm DATUM:							
	Drill	ing and Samp	oling				Material description and profile information			1	Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastic characteristics,colour,minor componer	ty/particle hts	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	FILL-TOPSOIL: Sandy CLAY - low plastici grey-brown, fine to medium grained sand, affected, with some sticks.	ty, dark root	M ~ Wp				FILL - TOPSOIL
				- 0.5		CI	Sandy CLAY - medium plasticity, pale oran fine to medium grained (mostly fine graine	 nge-brown, d) sand.	M > W _P	VSt	HP	300	RESIDUAL SOIL
		0.60m U50 0.80m					CLAY - medium to high plasticity, red-brow fine to medium grained sand.	 /n, trace					
	red		-										
AD/T	Not Encountered			- 1.0							HP	320	
				- 1.5_		СН			M ~ W _P	VSt / Fb	HP	350 330	
				-							HP	330	
				2.0			2.00m Hole Terminated at 2.00 m						
				-									
				-									
	END:	ı <u> </u>	!	Notes, Sa				Consist				CS (kPa)	
Water U₅₀ ✓ Water Level CBR (Date and time shown) E ✓ Water Inflow ASS ✓ Water Outflow ASS		E Environmental sample (Glass jar, sealed and chilled on site)				S F St VSt	Very Soft Soft Firm Stiff Very Stiff Hard	Very Soft <25 Soft 25 Firm 50 Stiff 10 Very Stiff 20			P		
Strata Changes B			Field Test PID	Bulk Sample ests Photoionisation detector reading (ppm)				Friable V L ME	Lo	ery Lo bose		Density Index <15% Density Index 15 - 35% Density Index 35 - 65%	

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH316

1 OF 1

NEW19P-0143F

BB

Drilling and Sampling					Material description and profile information								
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity characteristics,colour,minor component	ı/particle s	MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	FILL-TOPSOIL: Sandy CLAY - low plasticity grey-brown, fine to medium grained sand, t to medium grained angular gravel, root affe some sticks.	race fine	M < w _p				FILL - TOPSOIL
		0.50m		- 0.5		CI	Sandy CLAY - medium plasticity, pale brow medium grained sand.	n, fine to			HP	250	RESIDUAL SOIL
		U50		-			CLAY - medium to high plasticity, red-brown Some fine to medium grained sand.	 n, with	-		ΗP	320	
AU/I	Not Encountered	0.85m		- - 1.0					> W _P	VSt	HP	350	
				- - 1.5_		СН			×		ΗP	310	
							2.00m				ΗP	340	
				-			Hole Terminated at 2.00 m						
	Wat (Dat Wat	ter Level te and time sh ter Inflow ter Outflow anges	own)	Notes, Sar U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f nmenta jar, sea ulfate S c bag, a	<u>s</u> ter tube sample or CBR testing il sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt V H F	/ery Soft Soft Stiff /ery Stiff lard Friable		<2 25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
Gradational or Field Test PID			DCP(x-y)	Photoi Dynan	nic pene	n detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	L Loose			oose n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85%	

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH317

1 OF 1

NEW19P-0143F

BB

BO		OLE DIAM		k:	300 mm DATUM:								
	Dril	ling and Sam	npling			1	Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plastici characteristics,colour,minor componer	ty/particle its	MOISTURE	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
						CL	TOPSOIL: Sandy CLAY - low plasticity, da grey-brown, fine to medium grained sand, affected with some sticks. 0.40m CLAY - medium to high plasticity, red-brow some fine to medium grained (mostly fine s sand.	root 	M < Wp		HP	250	TOPSOIL
AD/T	Not Encountered	0.60m U50 0.80m		- - - 1. <u>0</u>							HP	300 300	
				- - 1. <u>5</u>		СН			M ~ Wp	VSt	HP	320	
							2.00m Hole Terminated at 2.00 m				HP	310	
				-									
	Wat (Da Wat Wat ta Ch	ter Level te and time sh ter Inflow ter Outflow anges iradational or	iown)	Notes, Sa U ₅₀ CBR E ASS B Field Test	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	i Diame ample f onmenta s jar, se Sulfate \$	ts ter tube sample for CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F I St S VSt V	Very Soft Soft Firm Stiff Very Stiff Hard Friable V		<2 2 50 10 20	<u>CS (kPa</u> 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit Density Index <15%
	tra D	ansitional stra efinitive or dis trata change		PID DCP(x-y) HP	Dynar	nic pen	on detector reading (ppm) etrometer test (test depth interval shown) ometer test (UCS kPa)		L ME D VD	D M	oose lediun ense ery D	n Dense ense	Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH318

1 OF 1

NEW19P-0143F

BB

		YPE: Ole diam		ONNE E	300 m		E RL:						
	Dril	ling and Sam	pling				Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticity/partic characteristics,colour,minor components	le F	MOIS TURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	TOPSOIL: Sandy CLAY - low to medium plasticity dark grey-brown, fine to medium grained sand.	,	$M \sim w_p$				TOPSOIL
				0.5		 CI	 <u>0.40m</u> Sandy CLAY - medium plasticity, pale brown, fine medium grained (mostly fine grained) sand. 0.55m 	to	M > w _P	St	HP	190	RESIDUAL SOIL
	ntered	0.60m U50		-			CLAY - medium to high plasticity, red-brown, trace fine to medium grained (mostly fine grained) sand trace fine grained sub-rounded gravel.	,			HP	380	
AD/T	Not Encountered	0.95m		1.0					W _P		HP	310	
				- 1. <u>5</u> -		СН			$M < w_p$	VSt	HP	360	
				2.0			2.00m				HP	350	
				-			Hole Terminated at 2.00 m						
<u>Wat</u> ▼	Wat (Da Wat	ter Level te and time sh ter Inflow ter Outflow	iown)	− Notes, Sar U₅ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti Bulk S	Diame ample f onmenta jar, se Gulfate S c bag, a	s Construction ter tube sample VS or CBR testing S I sample F aled and chilled on site) St ioil Sample VSt ir expelled, chilled) H Fb Fb	Soft Firm Stiff	y Soft i y Stiff d		<2 25 50 10 20 >4	5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit W _L Liquid Limit
	Gradational or transitional strata			DCP(x-y)	Photoionisation detector reading (ppm)			Density V L MD D VD				oose n Dense ense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

ENGINEERING LOG - BOREHOLE MCCLOY GROUP

PROJECT: MEDOWIE GARDENS - STAGE 3

LOCATION: MEDOWIE ROAD, MEDOWIE

CLIENT:

BOREHOLE NO:

PAGE:

DATE:

JOB NO:

LOGGED BY:

BH319

1 OF 1

NEW19P-0143F

ΒE 20/4/22

		YPE: OLE DIAN		TONNE ::	EXCA 300 m		DR SURI DATU	FACE RL: JM:					
	Dril	ing and San	npling			_	Material description and profile information				Fiel	d Test	
METHOD	WATER	SAMPLES	RL (m)	DEPTH (m)	GRAPHIC LOG	CLASSIFICATION SYMBOL	MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen		MOISTURE CONDITION	CONSISTENCY DENSITY	Test Type	Result	Structure and additiona observations
				-		CL	FILL-TOPSOIL: Sandy CLAY - low to medi plasticity, dark grey-brown, fine to coarse g sand, trace fine grained sub-angular grave	rained	$M \sim W_P$				FILL - TOPSOIL
		0.50m		- 0.5_			FILL: Sandy CLAY - medium to high plasti red-brown with orange to dark grey, fine to grained sand.				HP	300 320	FILL - CONTROLLED
		U50 0.65m		-		СН				VSt	HP	300	
AD/T	Not Encountered	1.00m		- 1. <u>0</u>			1.00m Sandy CLAY - medium to high plasticity, pa trace fine to medium grained sand, trace fi	ale brown,	- 4				RESIDUAL SOIL
		U50 1.20m		-			medium grained sub-rounded gravel.		M > W _P	St	HP	160	
				1. <u>5</u> - - -		СН	Red-brown.			VSt	HP	200	
							2.00m Hole Terminated at 2.00 m						
<u>Wat</u> ▲	Wat (Da Wat	er Level te and time sl er Inflow er Outflow anges	hown)	Notes, Sa U ₅₀ CBR E ASS B	50mm Bulk s Enviro (Glass Acid S (Plasti	Diame ample f nmenta jar, se sulfate \$	ts ter tube sample or CBR testing al sample aled and chilled on site) Soil Sample air expelled, chilled)	S S F F St S VSt N H F	ency Very Soft Soft Firm Stiff Very Stiff Hard Friable		<2 25 50 10 20	CS (kPa 25 5 - 50 0 - 100 00 - 200 00 - 400 400	D Dry M Moist W Wet W _p Plastic Limit
<u></u>	G tra D	radational or ansitional stra efinitive or dis rata change		Field Test PID DCP(x-y) HP	<u>ts</u> Photo Dynar	ionisatio nic pen	on detector reading (ppm) etrometer test (test depth interval shown) meter test (UCS kPa)	<u>Density</u>	V L ME D VE	L N D	ery Lo bose lediun ense ery D	n Dense	Density Index <15% Density Index 15 - 35% Density Index 35 - 65% Density Index 65 - 85% Density Index 85 - 100%

APPENDIX B:

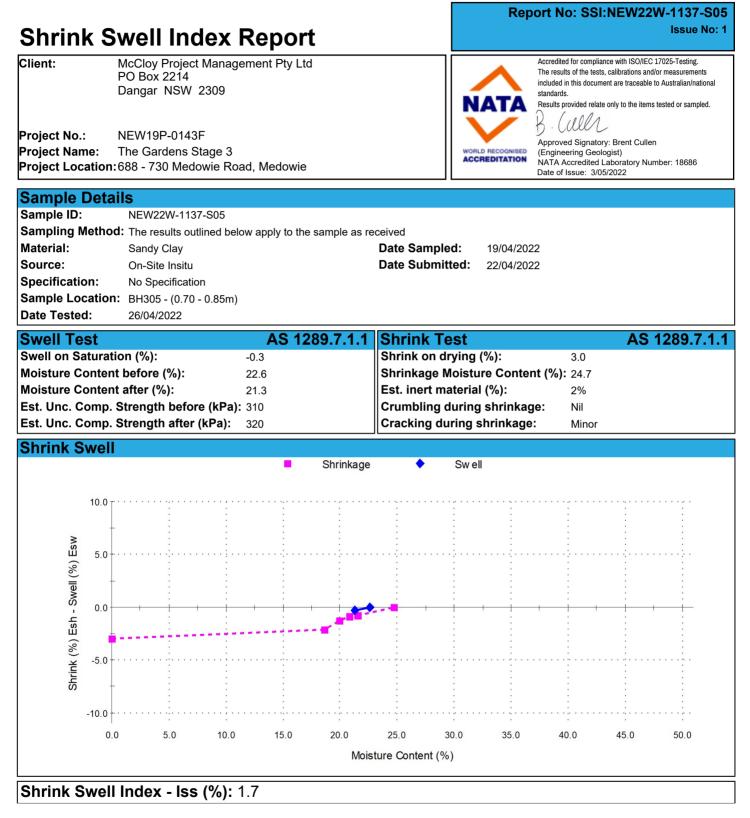
Results of Laboratory Testing

hrin			day D	onor	•			керо	ort No: SS	01.INC VV22	Issue No:
ient:	Mc PO	Cloy Projec Box 2214 ngar NSW	t Managem	-			N		standards.	sts, calibrations and ment are traceable	-
oject No. oject Nar oject Loc	ne: The	W19P-0143 e Gardens S 3 - 730 Med	Stage 3	Medowie				EDITATION	Approved Signat (Engineering Geo NATA Accredited Date of Issue: 3/	ologist) I Laboratory Nu	
	Details										
mple ID:		IEW22W-113									
		he results ou	tlined below	apply to the	sample as i						
aterial: ource:		Clay				Date Sar Date Sul	-	19/04/2022			
purce. pecificatio		On-Site Insitu Io Specificatio	~			Date Sul	Jinittea.	22/04/2022			
		BH301 - (0.60									
ate Teste		6/04/2022	- 0.7511)								
					00744	Chainel	Tact				4000 7 4
well Te		(0/).	0		89.7.1.1			0/).	0.4	A5	1289.7.1
	aturation		-0			11	on drying (-	3.1		
	ontent be ontent af			3.1).9			ge Moistui rt material		1% 1%		
oisture c		. ,				Est. mer	linateriai				
	Chrone Chro	anath hafa		-0		Crumbli		abrinkana	NIII		
st. Unc. C	-	ength befor					ng during a durina s	-			
st. Unc. C st. Unc. C	omp. Stre	ength befor ength after					ng during g during s	-	e: Nil Minor		
st. Unc. C st. Unc. C	omp. Stre	-				Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C	omp. Stre	-			Shrinkage	Cracking		hrinkage:			
st. Unc. C st. Unc. C	omp. Stre	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C	omp. Stre	-			Shrinkage	Cracking	g during s	hrinkage:			· · · · · · · · · · · · · · · · · · ·
st. Unc. C st. Unc. C hrink S	omp. Stre	-			Shrinkage	Cracking	g during s	hrinkage:			·····
st. Unc. C st. Unc. C hrink S	Swell	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C hrink S	omp. Stre	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C hrink S	Swell	-			Shrinkage	Cracking	g during s	hrinkage:			
at. Unc. C at. Unc. C hrink S	Swell 10.0 - · · · · 5.0 - · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C hrink S	Swell	-			Shrinkage	Cracking	g during s	hrinkage:			· · · · · · · · · · · · · · · · · · ·
st. Unc. C st. Unc. C hrink S	Swell 10.0 - · · · · 5.0 - · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			· · · · · · · · · · · · · · · · · · ·
st. Unc. C st. Unc. C hrink S	5.0 - · · · · · · · · · · · · · · · · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			· · · · · · · · · · · · · · · · · · ·
st. Unc. C st. Unc. C hrink S	Swell 10.0 - · · · · 5.0 - · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C	5.0 - · · · · · · · · · · · · · · · · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C hrink S	5.0 - · · · · · · · · · · · · · · · · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			· · · · · · · · · · · · · · · · · · ·
st. Unc. C st. Unc. C hrink S	5.0 - · · · · · · · · · · · · · · · · · ·	-			Shrinkage	Cracking	g during s	hrinkage:			
st. Unc. C st. Unc. C hrink S	10.0	-			Shrinkage	Cracking	g during s	hrinkage:		45.0	50.0
st. Unc. C st. Unc. C hrink S	10.0	ength after	(kPa): 21		20.0	Cracking	g during s Sw ell	hrinkage:	Minor		50.0

Shrin											
ient:	PO	Cloy Projec Box 2214 ngar NSW	-	ent Pty Ltd	1		N		Accredited for comp The results of the te included in this docu standards. Results provided rel	sts, calibrations and ument are traceable	d/or measurements to Australian/nation
oject No. oject Nan oject Loc	ne: The	W19P-0143 e Gardens S 3 - 730 Med	Stage 3	Medowie				RECOGNISED	Approved Signat (Engineering Ge NATA Accredited Date of Issue: 3,	ologist) d Laboratory Nu	
ample	Details										
ample ID:		EW22W-113									
ampling N	lethod: ⊤	he results ou	tlined below	apply to the	sample as	received					
aterial:	С	lay				Date Sa	-	19/04/2022	2		
ource:		n-Site Insitu				Date Sul	bmitted:	22/04/2022	2		
pecificatio		o Specificatio									
		H302 - (0.90	- 1.05m)								
ate Testeo	a: 2	6/04/2022									
well Te	st			AS 12	89.7.1.1	Shrin	k Test			AS	1289.7.1
wall on Se	aturation	(%)	-0	5		Shrink o	on drying ((%):	5.2		
well off 3d	aturation	(/0).	0	.0							
		. ,					ge Moistui	re Content	t (%): 29.5		
oisture C	ontent be	fore (%):	27			Shrinka	ge Moistui rt material		t (%): 29.5 1%		
oisture Co oisture Co	ontent be ontent af	fore (%):	27 29	7.3 0.4		Shrinka Est. ine	-	(%):	1%		
oisture C oisture C st. Unc. C	ontent be ontent aff omp. Stre	fore (%): ter (%):	27 29 re (kPa): 25	7.3 9.4 50		Shrinka Est. ine Crumbli	rt material	(%): shrinkage	1% e: Nil	r	
oisture Co oisture Co st. Unc. Co st. Unc. C	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50		Shrinka Est. ine Crumbli	rt material ing during	(%): shrinkage	1% e: Nil	r	
oisture Co oisture Co st. Unc. Co st. Unc. C	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkago	Shrinka Est. ine Crumbli Crackin	rt material ing during	(%): shrinkage hrinkage:	1% e: Nil	r	
oisture Co oisture Co st. Unc. Co st. Unc. C	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkage	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r	
oisture C oisture C st. Unc. C	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkage	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r	
oisture Co oisture Co st. Unc. Co st. Unc. C	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkage	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkagı	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkage	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkag	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	· · · · · · · · · · · · · · · · · · ·
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkag	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre well	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkag	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	· · · · · · · · · · · · · · · · · · ·
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkagı	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	· · · · · · · · · · · · · · · · · · ·
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre well	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkag	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	· · · · · · · · · · · · · · · · · · ·
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre well	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkagı	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre well	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkag	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r	· · · · · · · · · · · · · · · · · · ·
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre wwell	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkag	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre wwell	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkagı	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	· · · · · · · · · · · · · · · · · · ·
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre wwell	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkagı	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	г 	
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre well	fore (%): er (%): ength befor	27 29 re (kPa): 25	7.3 9.4 50	Shrinkage	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% e: Nil	r 	50.0
oisture Co oisture Co st. Unc. C st. Unc. C hrink S	ontent be ontent aff omp. Stre omp. Stre well 10.0 - · · · · 5.0 - · · · -5.0 - · · ·	fore (%): eer (%): ength befor ength after	27 29 re (kPa): 25 (kPa): 20		20.0	Shrinka Est. ine Crumbli Crackin	rt material ing during g during s Sw ell	(%): shrinkage hrinkage:	1% P: Nil Minor		50.0

Comments

Shrin					L			Керс	JIT NO. 33)1.INE VV22	W-1137-S0 Issue No:
lient:	Mc0 PO		t Managem	•			N		Accredited for comp The results of the te included in this docu standards. Results provided rel	sts, calibrations and iment are traceable	/or measurements to Australian/national
roject No. roject Nan roject Loc	ne: The	V19P-0143 Gardens S - 730 Mede		Medowie				EDITATION	Approved Signat (Engineering Ge NATA Accredited Date of Issue: 3	ologist) d Laboratory Nui	
ample	Details										
ample ID:	N	EW22W-113	7-S03								
ampling N	/lethod: Th	ne results ou	tlined below	apply to the	sample as r	eceived					
aterial:	Sa	andy Clay				Date Sar	npled:	19/04/2022	2		
ource:	O	n-Site Insitu				Date Sul	bmitted:	22/04/2022	2		
pecificatio	on: No	o Specificatio	on								
ample Lo	cation: BI		- 0.25m)								
ate Testeo	d: 26	6/04/2022									
well Te	st			AS 12	89.7 1 1	Shrink	Test			ΔS	1289.7.1
	aturation (%):	-0	.9			on drying (<u>%):</u>	2.4		1200.1.1
	ontent be	-).8			ge Moistur				
	ontent aft			1.2		11	rt material		1%		
			- re (kPa): >∈			11	ng during				
	-	ngth after				11	g during sl	-	Nil		
	-		. ,				<u> </u>				
hrink S	well				Chrinker		Owell				
					Shrinkage		Sw ell				
	10.0										
	10.0					· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		
	+	÷	:	÷			-	-	:		:
SW		:	:	:		:			:	:	:
) E	5.0 - · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••	• • • • • • • • • • • •	•••••	· · · · · · · · · · · ·			•••••		
) (%	1	-		-		÷	÷	-		÷	÷
wel			-			-					
s v	0.0	I I	I I	I				I	I I	I	— I
sh			معمقتص	a a a é a se é l							
() E		:		÷		:					:
Shrink (%) Esh - Swell (%) Esw	-5.0 - · · · ·				<u>.</u>				<u>.</u>		
Jrin						:	:	;			:
S	t	-	-	÷		÷	÷	-	÷		÷
	-10.0 - · · · ·	· · · · · · · · · · · · ·									
	0.0	5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0
						sture Conter					

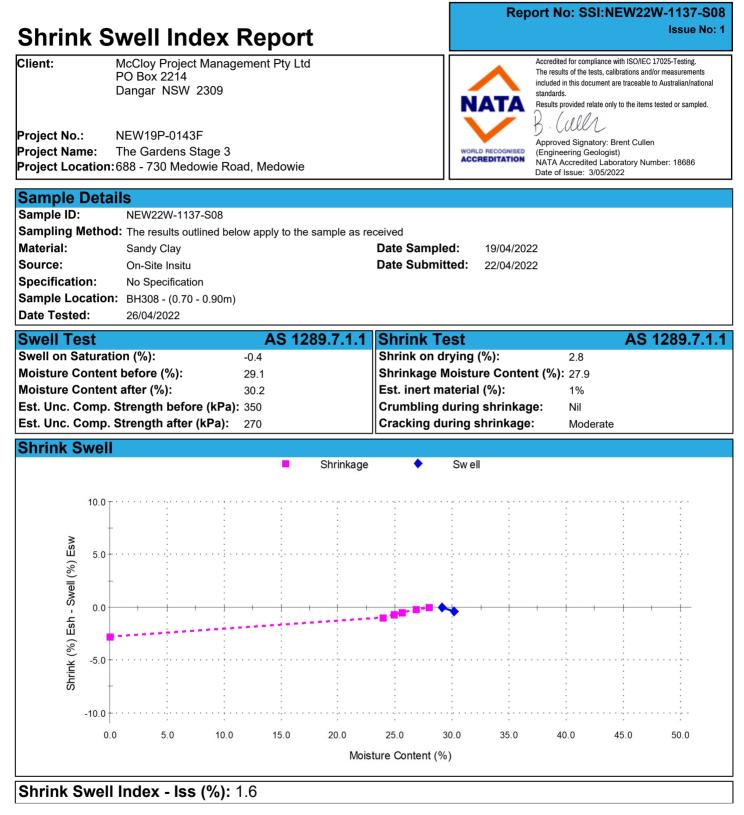


snrin	k Sw	ell Inc	лех к	cpui	L						
lient:	Mc(PO		t Managem	•			N		tandards.	sts, calibrations and ment are traceable	
roject No. roject Nan roject Loc	me: The	W19P-0143 Gardens S - 730 Med		Medowie				RECOGNISED	Approved Signate Engineering Geo NATA Accredited Date of Issue: 3/	ologist) I Laboratory Nu	
ample	Details										
ample ID:		EW22W-113	7-S04								
ampling N	Method: T	he results ou	tlined below	apply to the	sample as	received					
aterial:		andy Clay				Date Sar	mpled:	19/04/2022			
ource:	0	n-Site Insitu				Date Sul	bmitted:	22/04/2022			
pecificatio	on: N	o Specificatio	on								
ample Lo	cation: B	H304 - (0.40	- 0.55m)								
ate Teste	e d: 20	6/04/2022									
	aturation Content be		-0 17				on drying (ge Moistu	re Content	1.7 (%): 19.2		
oisture C	content aft	er (%):		8.8		Est. ine	rt material		1%		
oisture C st. Unc. C	Content aft Comp. Stre	er (%):	18 re (kPa): 37	3.8 70		Est. ine Crumbli	rt material	(%): shrinkage	1%		
oisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70		Est. ine Crumbli	rt material ing during	(%): shrinkage	1% : Nil		
oisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkage	Est. iner Crumbli Crackin	rt material ing during	(%): shrinkage hrinkage:	1% : Nil		
oisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkaga	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkagı	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		·····
oisture C at. Unc. C at. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		· · · · · · · · · · · · · · · · · · ·
oisture C at. Unc. C at. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkagı	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C at. Unc. C at. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		· · · · · · · · · · · · · · · · · · ·
oisture C at. Unc. C at. Unc. C hrink S	Sontent aft Comp. Stre Comp. Stre Swell	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		· · · · · · · · · · · · · · · · · · ·
oisture C at. Unc. C at. Unc. C hrink S	Sontent aft Comp. Stre Comp. Stre Swell	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C at. Unc. C at. Unc. C hrink S	Somp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkagı	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		· · · · · · · · · · · · · · · · · · ·
oisture C at. Unc. C at. Unc. C hrink S	Sontent aft Comp. Stre Comp. Stre Swell	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C st. Unc. C st. Unc. C hrink S	Somp. Stre	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		
oisture C at. Unc. C at. Unc. C hrink S	Content aft Comp. Stre Comp. Stre Swell 10.0 5.0 -5.0	er (%): ength befoi	18 re (kPa): 37	3.8 70	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage hrinkage:	1% : Nil		· · · · · · · · · · · · · · · · · · ·
oisture C at. Unc. C at. Unc. C hrink S	Content aft Comp. Stre Comp. Stre Comp. Stre Swell 10.0	er (%): ength befor ength after	18 re (kPa): 37 (kPa): 48	3.8 70 30	•	Est. inel Crumbli Crackin	rt material ing during g during s Sw ell	(%): shrinkage hrinkage:	1% Nil Minor		
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre Swell 10.0 5.0 -5.0	er (%): ength befoi	18 re (kPa): 37	3.8 70	20.0	Est. iner Crumbli Crackin	rt material ing during g during s Sw ell	(%): shrinkage hrinkage:	1% : Nil	45.0	50.0

Comments

- 02 4968 4468 т٠
- 02 4960 9775
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896
- F: E: W:

nrin												
nt:	F	PO Box 22	roject Man 214 ISW 2309	agemen	it Pty Ltd			N		Accredited for comp The results of the test included in this docu standards. Results provided rela	ests, calibrations and ument are traceable	d/or measurements to Australian/nation
ect No. ect Nar ect Loc	ne: ⁻		0143F ens Stage Medowie I		ledowie				RECOGNISED	Approved Signat (Engineering Ger NATA Accredited Date of Issue: 3/	eologist) d Laboratory Nu	
	Detai	ls										
ple ID:			V-1137-S06									
pling l erial:	Nethod		Its outlined	below ap	ply to the	sample as r		maladı	40/04/2022			
rce:		Clay On-Site I	neitu				Date Sar Date Sul	-	19/04/2022 22/04/2022			
cificati	on:	No Speci					Dute Ou		22/04/2022			
			(0.80 - 0.95	m)								
Teste		26/04/20		,								
ell Te	st				AS 12	89.7.1.1	Shrink	(Test			۵S	1289.7.
	aturatio	on (%):		-0.6				on drying ((%):	2.5		1203.7.
		before (%	<u>/</u>).	25.3				ge Moistu				
siule o	ontent	Delore (7	/0].									
		after (%)	•	28.0			11	rt material	(%):	2%		
sture C	ontent	after (%)	•	28.0			Est. ine	rt material ing during				
sture C Unc. C	ontent comp. S	after (%) Strength I	:	28.0 a): >600			Est. iner Crumbli		shrinkage		r	
sture C Unc. C Unc. C	ontent Comp. S Comp. S	after (%) Strength I	: before (kP	28.0 a): >600			Est. iner Crumbli	ing during	shrinkage	: Nil	r	
sture C Unc. C	ontent Comp. S Comp. S	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during	shrinkage hrinkage:	: Nil	r	
sture C Unc. C Unc. C	ontent Comp. S Comp. S	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	
sture C Unc. C Unc. C	ontent Comp. S Comp. S	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	
sture C Unc. C Unc. C	content Comp. S Comp. S Comp. S	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r 	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	tontent comp. S comp. S comp. S well	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	content Comp. S Comp. S Comp. S	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	tontent comp. S comp. S comp. S well	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	10.0	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	
sture C Unc. C Unc. C 'ink S	tontent comp. S comp. S comp. S well	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	10.0	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	10.0 5.0	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	10.0	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	10.0 - 5.0 - 0.0 -	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	
sture C Unc. C Unc. C 'ink S	10.0 - · · 5.0 - · · 0.0 - · ·	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	· · · · · · · · · · · · · · · · · · ·
sture C Unc. C Unc. C 'ink S	10.0 - 5.0 - 0.0 -	after (%) Strength I	: before (kP	28.0 a): >600		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r	
sture C Unc. C Unc. C 'ink S	10.0 - · · 5.0 - · · 0.0 - · ·	after (%) Strength I	: before (kP after (kPa)	28.0 (a): >600 : 350		Shrinkage	Est. iner Crumbli Crackin	ing during g during s	shrinkage hrinkage:	: Nil	r 	50.0
sture C Unc. C Unc. C 'ink S	10.0	after (%) strength I strength a	: before (kP after (kPa)	28.0 (a): >600 : 350			Est. inel Crumbli Crackin	ing during s g during s Sw ell	shrinkage:	E Nil Minor		50.0



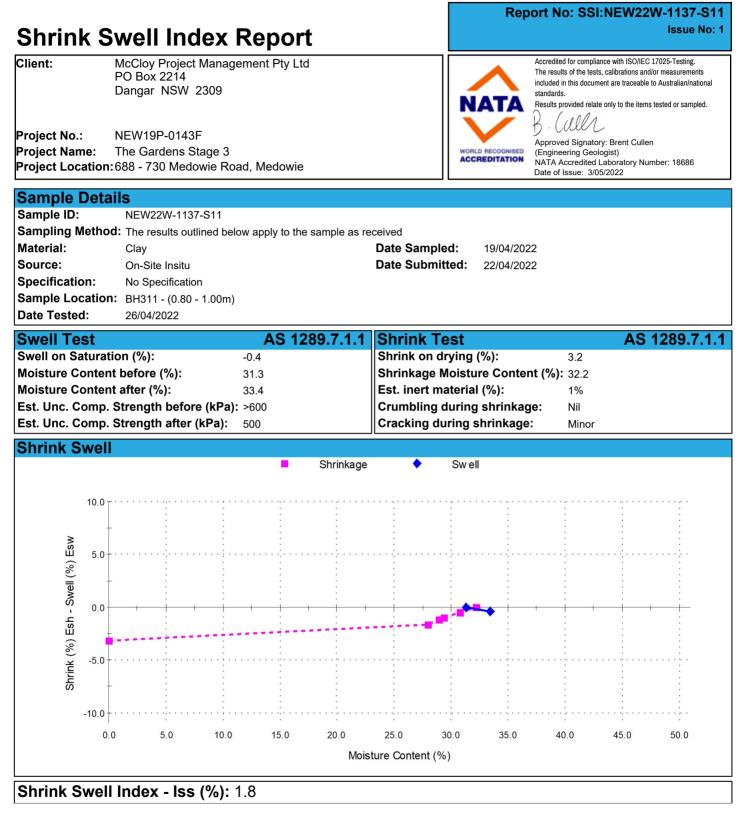
hrin		all Ind									Issue No:
ient:	Mc PO Da	Cloy Project Box 2214 ngar NSW	t Managem 2309	-			N		Accredited for compl The results of the test neluded in this docu standards. Results provided rela	sts, calibrations and ment are traceable	/or measurements to Australian/national
oject No. oject Nan oject Loc	ne: The	W19P-0143 e Gardens S 3 - 730 Mede	Stage 3	Medowie				EDITATION	Approved Signat (Engineering Geo NATA Accredited Date of Issue: 3/	ologist) d Laboratory Nur	
	Details										
ample ID:		EW22W-113									
		he results ou	tlined below	apply to the	sample as		mpled	10/04/0000			
aterial: ource:		lay Sito Insitu				Date Sa	mpiea: bmitted:	19/04/2022			
ource: pecificatio		on-Site Insitu lo Specificatio	n			Date Su	unintea:	22/04/2022			
		6 Specificatio H307 - (0.30									
ate Teste		6/04/2022	- 0.45(11)								
					00744						4000 7 4
well Te		(0/).			89.7.1.1			0/).		AS	1289.7.1
	aturation	(%):	-2	.3		Surink o	on drying (-	2.3		
		fama (0/)-	·			O hadren 1	NA!-+				
oisture C	ontent be			⁷ .8		11	ge Moistur				
oisture C oisture C	ontent af	ter (%):	24	.8		Est. ine	rt material	(%):	2%		
oisture C oisture C st. Unc. C	ontent af comp. Stro	ter (%): ength befor	24 r e (kPa): >6	4.8 600		Est. ine Crumbli	rt material ing during	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C	ontent aff comp. Stro comp. Stro	ter (%):	24 r e (kPa): >6	4.8 600		Est. ine Crumbli	rt material	(%): shrinkage	2%		
oisture C oisture C st. Unc. C st. Unc. C	ontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50		Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C	ontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	4.8 600	Shrinkago	Est. iner Crumbli Crackin	rt material ing during	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C	ontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C	ontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C	ontent aff comp. Stro comp. Stro swell	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stro comp. Stro comp. Stro comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	ontent aff comp. Stro comp. Stro swell	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stre comp. Stre comp. Stre tonp. Stre	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		· · · · · · · · · · · · · · · · · · ·
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkagı	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stre comp. Stre comp. Stre tonp. Stre	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil	· · · · · · · · · · · · · · · · · · ·	
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil	· · · · · · · · · · · · · · · · · · ·	
oisture C oisture C st. Unc. C st. Unc. C hrink S	tontent aff comp. Stro comp. Stro	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	10.0 - - 5.0 - - 0.0 - -	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkagı	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	10.0 - - 5.0 - - 0.0 - -	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkag	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	10.0 - - 5.0 - - 0.0 - -	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil		
oisture C oisture C st. Unc. C st. Unc. C hrink S	10.0	ter (%): ength befor	24 r e (kPa): >6	1.8 600 50	Shrinkage	Est. iner Crumbli Crackin	rt material ing during g during s	(%): shrinkage	2% : Nil	45.0	50.0
oisture C oisture C st. Unc. C st. Unc. C hrink S	10.0	ter (%): ength befor ength after	24 re (kPa): >6 (kPa): 55	I.8 500 50	20.0	Est. ine Crumbli Crackin	rt material ing during g during s Sw ell	(%): shrinkage hrinkage:	2% Nil Nil	45.0	50.0

Comments

- т٠ 02 4968 4468
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

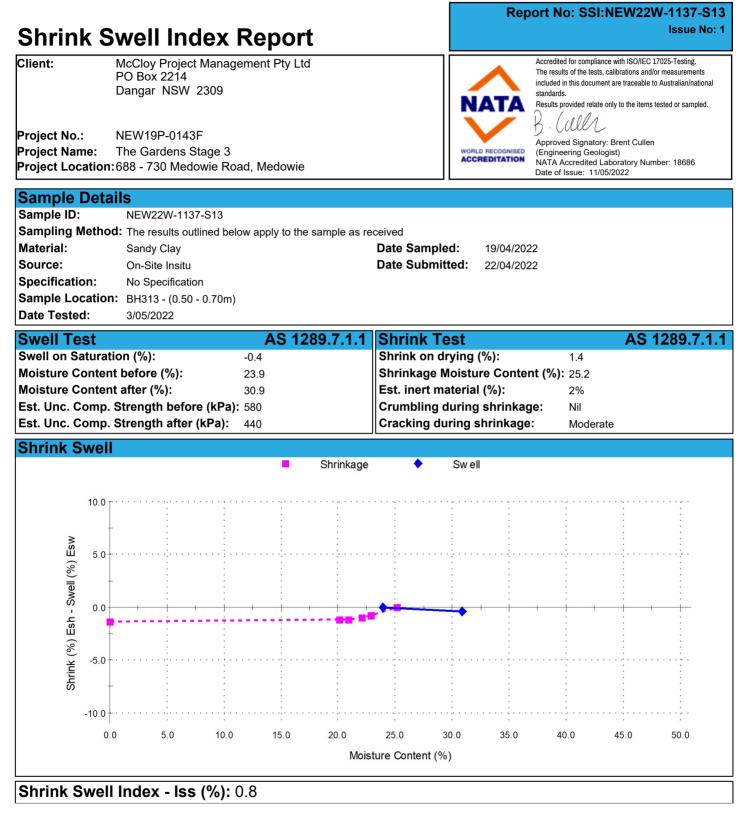
Comments

	k Sw										
lient:	PO	Cloy Project Box 2214 Igar NSW	t Managem 2309	ent Pty Ltd	1		N		The results of the te ncluded in this docu standards.	bliance with ISO/IEC lists, calibrations and ument are traceable late only to the items	/or measurements to Australian/nationa
roject No. roject Nar roject Loc	me: The	W19P-0143 Gardens S - 730 Med		Medowie				RECOGNISED EDITATION	Engineering Ge	d Laboratory Nur	
	Details										
ample ID:		EW22W-113									
			tlined below	apply to the	sample as i		n n l n nl i	4010410000			
aterial: ource:		andy Clay n-Site Insitu				Date Sar Date Sul	-	19/04/2022 22/04/2022			
pecificati		n-Site Insitu o Specificatio	n			Date Sul	Sintleu.	22/04/2022			
ate Teste		6/04/2022	0.1.01.1)								
well Te	et			AC 12	89.7.1.1	Shrink	Tost			20	1289.7.1
	aturation (·%)·	-0		09.7.1.1		on drying (%).	2.3	AJ	1203.7.1
		-	-0	.0			/// arying (-			
oisture C	content be	fore (%):	20	8		Shrinka	ae Moistur	e Content	(%): 28.3		
	ontent be ontent aft).8 .0			ge Moistur rt material		t (%): 28.3 1%		
loisture C	ontent aft	er (%):	31	.0		Est. iner	rt material	(%):	1%		
loisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%):	31 re (kPa): 54	.0 10		Est. iner Crumbli	-	(%): shrinkage	1%	r	
loisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	·····:
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	· · · · · · · · · · · · · · · · · · ·
oisture C st. Unc. C st. Unc. C hrink S	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	· · · · · · · · · · · · · · · · · · ·
oisture C st. Unc. C st. Unc. C hrink S ^SI (%)	Somp. Stre Somp. Stre Swell	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%)	Content aft Comp. Stre Comp. Stre	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	· · · · · · · · · · · · · · · · · · ·
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%)	Somp. Stre Somp. Stre Swell	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%)	Some in the second seco	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%)	Somp. Stre Somp. Stre Swell	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S	Some in the second seco	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%)	Content aft Comp. Stre Comp. Stre Comp. Stre Swell 10.0	er (%): ngth befor	31 re (kPa): 54	.0 10	Shrinkage	Est. iner Crumbli Cracking	rt material ng during g during sl	(%): shrinkage	1% : Nil	r	
loisture C st. Unc. C st. Unc. C Shrink S (%) IIIIN	Content aft Comp. Stree Comp.	er (%): ingth befor ingth after	31 re (kPa): 54 (kPa): 60			Est. iner Crumbli Cracking	rt material ng during g during sl Sw ell	(%): shrinkage hrinkage:	1% P: Nil Minor		50.0
loisture C st. Unc. C st. Unc. C Shrink S (%) IIIIN	Content aft Comp. Stre Comp. Stre Comp. Stre Swell 10.0	er (%): ngth befor	31 re (kPa): 54	.0 10	20.0	Est. iner Crumbli Cracking	rt material ng during g during sl Sw ell	(%): shrinkage	1% : Nil	r	50.0


Comments

			lov D		6			Repo	rt No: SS		W-1137-S1 Issue No
DIIIIII	McC PO I		Managem 2309				N	TI in st	he results of the tes cluded in this docu andards.		
oject No.: oject Nan oject Loc	ne: The	V19P-0143 Gardens S - 730 Mede		Medowie				EDITATION N	Engineering Geo	Laboratory Nur	
ample I	Details										
mple ID:		W22W-113									
ampling N	lethod: Th	e results ou	tlined below	apply to the	sample as i	eceived					
aterial:	Cla	ау				Date Sar	npled:	19/04/2022			
ource:	Or	n-Site Insitu				Date Sul	bmitted:	22/04/2022			
ecificatio	on: No	Specificatio	on								
mple Loc	cation: B⊦	1310 - (0.80	- 1.05m)								
ite Tested		/04/2022	,								
vell Te	st			AS 12	89.7.1.1	Shrink	(Test			۵S	1289.7.1
	aturation (%):	-0				on drying (%):	0.9		1200.7.1
	ontent bef	-	-0			11		re Content			
	ontent afte		28				rt material		5%		
			20 re (kPa): >6					shrinkage:			
	omp. Stre	-					g during s	-	. Major		
	-		(11 4). 40				g during s	innikage.	Major		
	well			_	.						
hrink S					Shrinkage	e 🔶	Sw ell				
hrink S											
hrink S	10.0										
nrink S		· · · · · · · · · · · · · · · · · · ·							- I	· · · · · · · · · · · · · · · · · · ·	
				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		-
	10.0 + · · · · ·									· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	10.0 + · · · · ·									· · · · · · · · · · · · · · · · · · ·	
	10.0 + · · · · ·								· · · · · · · · · · · · · · · · · · ·		
	10.0 + · · · · ·										
	10.0 - · · · · · · · · · · · · · · · · · ·						•				
	10.0 - · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				•				
	10.0 - · · · · · · · · · · · · · · · · · ·						•		·····		
	10.0 - · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				•				
Shrink (%) Esh - Swell (%) Esw	10.0 - · · · · · · · · · · · · · · · · · ·						•	· · · · · · · · · · · · · · · · · · ·			
Shrink (%) Esh - Swell (%) Esw	10.0 - · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·			
Shrink (%) Esh - Swell (%) Esw	10.0 - · · · · · · · · · · · · · · · · · ·										
Shrink (%) Esh - Swell (%) Esw	10.0 - · · · · · · · · · · · · · · · · · ·	5.0	10.0	15.0	20.0	25.0 sture Conter	30.0	35.0	40.0	45.0	50.0

- т٠ 02 4968 4468
- 02 4960 9775
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896
- F: E: W:



Shrin								Repo	ort No: SS	I:NEW22	W-1137-S ⁴ Issue No
, , , , , , , , , ,	k Swe	ell Inc	dex R	eport	t						13306 140
ient:	PO	Cloy Projec Box 2214 gar NSW	t Managem 2309	ent Pty Ltd			N		Accredited for compl The results of the tes included in this docu standards. Results provided rela	sts, calibrations and ment are traceable	/or measurements to Australian/national
oject No.: oject Nan oject Loc	ne: The	V19P-0143 Gardens S - 730 Med		Medowie				EDITATION	Approved Signate (Engineering Geo NATA Accredited Date of Issue: 11	ologist) I Laboratory Nur	
amplo	Details								Date of Issue.	1/05/2022	
mple ID:		EW22W-113	7-\$12								
-			tlined below	annly to the	sample as r	eceived					
aterial:	Cla				sample as i	Date Sar	nnlad	19/04/2022)		
ource:		ay n-Site Insitu				Date Sal	-				
	-					Date Sul	Jinitteu.	22/04/2022			
ecificatio		Specificatio									
	cation: BH		- 0.80m)								
te Teste	d: 3/0)5/2022									
well Te	st			AS 12	89.7.1.1	Shrink	Test			AS	1289.7.1
	aturation (%):	-0				on drying (%):	3.1		
	ontent bef	-	31			11	ge Moistur	-			
	ontent afte			.0 9.7			t material		1%		
							ng during	. ,			
	omp. Stre	-		500 500			g during s	-	Minor		
			(n u)(000			g during Si	ininkage.	WIIIO		
	-		· · /								
	-		· · ·								
	-		. ,		Shrinkage	e 🔶	Sw ell				
	-			•	Shrinkage	e 🔶	Sw ell				
hrink S	-			•	Shrinkage	e •	Sw ell				
	well		· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	Shrinkage	• ◆	Sw ell			· · · · · · · · · · · · · · · · · · ·	
nrink S	well			•	Shrinkage	3	Sw ell	• • • • • • • • • • • • • • • • • • •			
nrink S	10.0 T · · · · ·				Shrinkage	2 •	Sw ell				
nrink S	well			•	Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·		
nrink S	10.0 T · · · · ·			•	Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
nrink S	10.0 T · · · · ·				Shrinkage	2	Sw ell			· · · · · · · · · · · · · · · · · · ·	
hrink S	10.0 T · · · · ·				Shrinkage	2	Sw ell		· · · · · · · · · · · · · · · · · · ·		
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage		Sw ell	••••	· · · · · · · · · · · · · · · · · · ·		
nrink S	10.0 - · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		Shrinkage	2	Sw ell	••••	· · · · · · · · · · · · · · · · · · ·		
nrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage	2	Sw ell	•	· · · · · · · · · · · · · · · · · · ·		
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		Shrinkage	•	Sw ell	•	· · · · · · · · · · · · · · · · · · ·		
	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage	2	Sw ell	••••			· · · · · · · · · · · · · · · · · · ·
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage	2	Sw ell	•	· · · · · · · · · · · · · · · · · · ·		
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage	3	Sw ell	•	· · · · · · · · · · · · · · · · · · ·		
hrink S	10.0 T · · · · · · · · · · · · · · · · · ·			15.0				35.0	40.0	45.0	50.0
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·	5.0	10.0	15.0	20.0	25.0 sture Conter	30.0	35.0	40.0	45.0	50.0

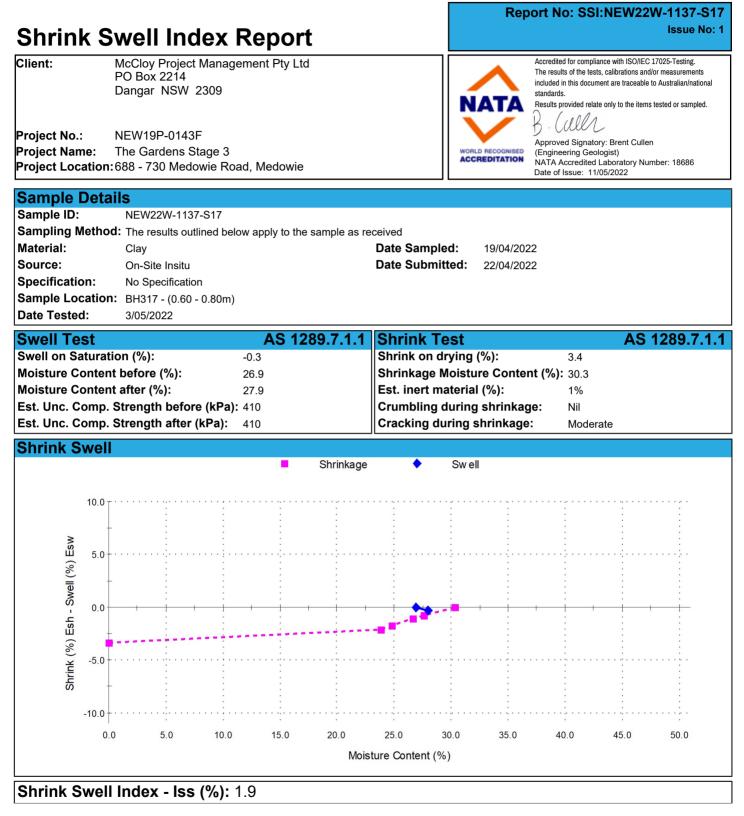
Comments

- т٠ 02 4968 4468
- 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

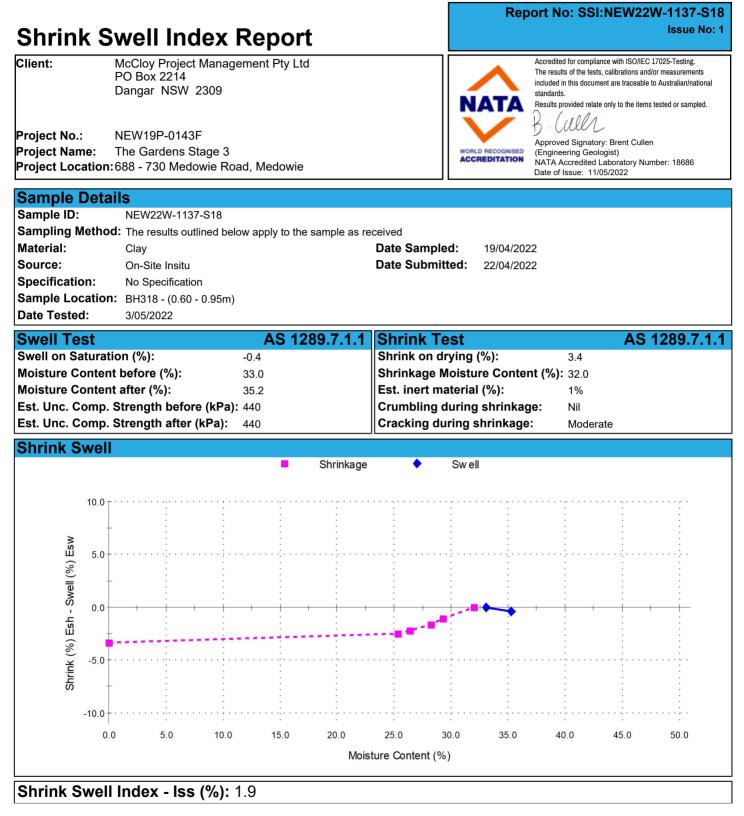
Comments

thrin!		all Inc	day D	onori	ŀ			Repo	ort No: SS		Issue No:
ient:	McC PO		dex R t Manageme 2309	-			N		The results of the te ncluded in this docu standards.	liance with ISO/IEC sts, calibrations and iment are traceable ate only to the items	/or measurements to Australian/national
oject No.: oject Nam oject Loca	ne: The	V19P-0143 Gardens S - 730 Mede		Medowie				EDITATION	Engineering Ge	d Laboratory Nur	
ample [Details										
mple ID:		EW22W-113									
	lethod: Th	e results out	tlined below a	apply to the	sample as r	eceived					
aterial:	Cla	ау				Date Sar	npled:	19/04/2022			
ource:	Or	n-Site Insitu				Date Sub	omitted:	22/04/2022			
pecificatio	on: No	Specificatio	on								
mple Loc	cation: BH		- 0.90m)								
te Testec		05/2022									
vell Te	et			AS 12	89.7.1.1	Shrink	Tost			20	1289.7.1
	aturation (%).	-0.		00.7.1.1		on drying (%).	3.1	AU	1205.7.1
	ontent bef	-	-0. 29			11	ge Moistur	-			
	ontent afte						-				
	ontent alte	JI (70).	32	.2		ILEST. IIIel	t material	(70).	1%		
			··· (I- D -)· · · ·	•				- I!	- N.111		
st. Unc. Co	omp. Stre	-	re (kPa): 36				ng during	-			
st. Unc. Co	omp. Stre	ngth befor ngth after					ng during g during sl	-	: Nil Mode	erate	
st. Unc. Co st. Unc. Co	omp. Stre omp. Stre	-						-		erate	
st. Unc. Co	omp. Stre omp. Stre	-			Shrinkage	Cracking		-		erate	
st. Unc. Co st. Unc. Co	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
st. Unc. Co st. Unc. Co	omp. Stre omp. Stre	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Co t. Unc. Co	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	· · · · · · · · · · · · · · · · · · ·
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Ca t. Unc. Ca nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Ca t. Unc. Ca nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-			
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-			
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-			
t. Unc. Ca t. Unc. Ca nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Co t. Unc. Co	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
t. Unc. Cd t. Unc. Cd nrink S	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
rt. Unc. Co rt. Unc. Co hrink So Nrink So Nrink So Nrink So Nrink So	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	
rt. Unc. Co rt. Unc. Co hrink So Nrink So Nrink So Nrink So Nrink So	omp. Stre omp. Stre well	-		0	Shrinkage	Cracking	g during s	-		erate	50.0
st. Unc. Co st. Unc. Co hrink (%) Esw - Swell (%) Esw	omp. Stre omp. Stre well 10.0 - · · · · · 5.0 - · · · · - 5.0 - · · · ·	ngth after	(kPa): 35		20.0	Cracking	g during sl	hrinkage:	Mode		50.0

Comments


			ndo		nort				Repo	rt No: SS	I:NEW22	W-1137-S1 Issue No
Shrin	M P	cCloy Pr O Box 22	oject Mar	nagemen					ir	he results of the test included in this docu tandards.		
oject No. oject Nan oject Loc	ne: T		ens Stage		edowie					Approved Signat	ory: Brent Culler blogist) I Laboratory Nur	ı
ample	Detail	S										
mple ID:			/-1137-S15									
mpling N	Method:	The resul	ts outlined	below ap	ply to the sa	imple as re	ceived					
aterial:		Clay					Date Sam		9/04/2022			
ource:		On-Site Ir	nsitu				Date Subr	nitted: 2	2/04/2022			
ecificatio		No Speci										
mple Lo		BH315 - (0.60 - 0.80)m)								
te Teste	d:	3/05/2022	2									
vell Te	st				AS 1289	9.7.1.1	Shrink	Test			AS	1289.7.1
vell on Sa		n (%):		-0.9			Shrink on		.):	2.6		
oisture C	ontent k	before (%	6):	29.6			Shrinkage		-	(%): 30.4		
oisture C		-	-	27.4			Est. inert			1%		
t. Unc. C	omp. St	rength b	oefore (kl	Pa): 300			Crumblin	-	-	: Nil		
st. Unc. C	-	-		-			Cracking		-	Mode	rate	
hrink S	wall	-							-			
	wen				•	Shrinkage	•	Sw ell				
						ommage		Owen				
	10.0											
	10.0 - · ·							÷	:			
	+						:			÷		
Shrink (%) Esh - Swell (%) Esw	5.0				-				-		:	
() E	5.0 - · ·											
6) II	+											
Swe							-					
	0.0	- I I		1 1	1 1	1						
Esh		فتنادد		******				:	:	:	:	:
(%)				-	÷		:		÷	÷		
k (°	-5.0 - · ·			÷	••••							
rin						-	÷	-	-	:		-
2	T				1		1		:			:
S								:	:		1	
ъ	-10.0 + · ·											
ъ	-10.0 + · ·	 			45.0			20.0		40.0		50.0
S	-10.0 + · · 0.0	5.0	D 1	0.0	15.0	20.0	25.0 ture Content	30.0	35.0	40.0	45.0	50.0

		- 11 1						Керо	ort No: SS	I:NEW22	W-1137-S1 Issue No
DITINI	McC PO		dex R t Managem 2309				N		Accredited for compl The results of the tes included in this docu standards. Results provided rela	sts, calibrations and, ment are traceable	/or measurements to Australian/national
oject No.: oject Nan oject Loc	ne: The	V19P-0143 Gardens S - 730 Mede		Medowie				EDITATION	Approved Signate (Engineering Geo NATA Accredited Date of Issue: 11	ologist) I Laboratory Nur	
ample I	Details										
mple ID:	NE	EW22W-113	7-S16								
ampling N	/lethod: Th	e results ou	tlined below	apply to the	sample as r	eceived					
aterial:	Cla	ау				Date Sar	npled:	19/04/2022			
ource:	Or	n-Site Insitu				Date Sul	omitted:	22/04/2022			
pecificatio	on: No	Specificatio	on								
ample Loc	cation: BH	H316 - (0.50	- 0.95m)								
ate Tested)5/2022	,								
well Te	^			AC 12	89.7.1.1	Chrink	Taat			10	1289.7.1
		0/ \.	4		09./. .)/).	0.0	AJ	1203.1.1
	aturation (-	-1			11	on drying (-	3.8		
	ontent bef			1.9		·	ge Moistur				
	ontent afte	. ,		5.5			t material	. ,	1%		
	-	-	re (kPa): 43			11	ng during	-			
	omp. Stre	ngth after	(kPa): 43	30		Cracking	g during sł	hrinkage:	Minor		
st. Unc. C		<u> </u>									
	-	<u> </u>									
	-				Shrinkage	•	Sw ell				
st. Unc. C hrink S	-			•	Shrinkage	e 🔶	Sw ell				
	-		· · · · · · · · · · · · · · · · · · ·		Shrinkage	•	Sw ell		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	well				Shrinkage	•	Sw ell	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
hrink S	well			••••••••••••••••••••••••••••••••••••••	Shrinkage	• • •	Sw ell				
hrink S	well				Shrinkage	•	Sw ell			· · · · · · · · · · · · · · · · · · ·	
hrink S	10.0 T · · · · ·				Shrinkage	•	Sw ell				
hrink S	10.0 T · · · · ·		· · · · · · · · · · · · · · · · · · ·		Shrinkage	•	Sw ell				
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage	•	Sw ell				
hrink S	10.0 T · · · · ·				Shrinkage		Sw ell	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·	·····			Shrinkage		Sw ell		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage		Sw ell		· · · · · · · · · · · · · · · · · · ·		
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage		Sw ell				
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage		Sw ell				
	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage		Sw ell				
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·				Shrinkage		Sw ell				
hrink S	10.0 T · · · · · · · · · · · · · · · · · ·		10.0	15.0				35.0	40.0	45.0	50.0
hrink S	10.0 - · · · · · · · · · · · · · · · · · ·	5.0	10.0	15.0	20.0	25.0 sture Conter	30.0	35.0	40.0	45.0	50.0



- 02 4968 4468 т٠
- 02 4960 9775
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896
- F: E: W:

- 02 4968 4468 т٠
- 02 4960 9775
- E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896
- F: E: W:

Shrin		•••••		-							
ient:	PO	Cloy Project Box 2214 gar NSW	t Managem 2309	ent Pty Ltd	I		N		The results of the ten included in this docu standards. Results provided rela	late only to the items	/or measurements to Australian/nationa
oject No. oject Nar oject Loc	ne: The	V19P-0143 Gardens S - 730 Mede	-	Medowie				RECOGNISED EDITATION	(Engineering Ge	tory: Brent Culler ologist) d Laboratory Nur	
ample											
ample ID:		EW22W-113									
ampling N aterial:			tlined below	apply to the	sample as		mplad	10/04/2022			
ource:		andy Clay n-Site Insitu				Date Sar Date Sul	-	19/04/2022 22/04/2022			
pecificatio	-	o Specificatio	on			Bate out		2210712022			
ate Teste		05/2022	,								
well Te	st			AS 12	89.7.1.1	Shrink	(Test			٨S	1289.7.1
	aturation (%):	-0		00.7.1.1		on drying (%):	2.1		1200.7.1
			•	.0			·	/•/-	_		
oisture C		-	22	2.7		Shrinka	qe Moistur	e Content	t (%): 19.9		
	ontent bei ontent aft	fore (%):		2.7 2.5			ge Moistur rt material		t (%): 19.9 2%		
oisture C	ontent bei ontent aft	fore (%): er (%):		2.5		Est. iner	-	(%):	2%		
oisture C st. Unc. C st. Unc. C	ontent bei ontent aft omp. Stre omp. Stre	fore (%): er (%):	22 re (kPa): 45	2.5 50		Est. iner Crumbli	rt material	(%): shrinkage	2%	eraet	
oisture C st. Unc. C	ontent bei ontent aft omp. Stre omp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during	(%): shrinkage	2% 2%	eraet	
oisture C st. Unc. C st. Unc. C	ontent bei ontent aft omp. Stre omp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%	eraet	
oisture C st. Unc. C st. Unc. C hrink S	ontent bei ontent aft omp. Stre omp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		· · · · · · · · · · · · · · · · · · ·
oisture C st. Unc. C st. Unc. C hrink S	ontent bei ontent aft omp. Stre omp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%	eraet	
oisture C st. Unc. C st. Unc. C hrink S	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		· · · · · · · · · · · · · · · · · · ·
oisture C st. Unc. C st. Unc. C hrink S	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%	eraet	
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre comp. Stre comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre comp. Stre comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre comp. Stre comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkag	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%		
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre	fore (%): er (%): ngth befor	22 re (kPa): 45	2.5 50	Shrinkage	Est. iner Crumbli Crackin	rt material ng during g during s	(%): shrinkage	2% 2%	eraet	50.0
oisture C st. Unc. C st. Unc. C hrink S ^NSI (%) ₪	ontent bei ontent aft comp. Stre comp. Stre comp. Stre comp	fore (%): er (%): ngth befor ngth after	22 re (kPa): 45 (kPa): 45	2.5	20.0	Est. inel Crumbli Crackin	rt material ng during g during s Sw ell	(%): shrinkage hrinkage:	2% P: Nil Mode		50.0

Comments

Shrin	K JW				-						
lient:	PO	Cloy Project Box 2214 gar NSW	t Managem 2309	ent Pty Ltd	I		N		standards.	ests, calibrations and ument are traceable	
roject No. roject Nan roject Loc	ne: The	V19P-0143 Gardens S - 730 Med	-	Medowie				EDITATION	Approved Signat (Engineering Ger NATA Accredited Date of Issue: 11	eologist) d Laboratory Nu	
laterial: ource: pecificatio	NI Alethod: Th Ci Oi On: No		tlined below a	apply to the	sample as i	received Date Sar Date Sul	· · · · ·	19/04/2022 22/04/2022			
ate Teste		05/2022			89.7.1.1	Shrink	c Test on drying (%):	2.1	AS	1289.7.1
well on Sa oisture C oisture C	aturation (ontent bei ontent aft	ore (%): er (%):	-1. 20 20 26 (kPa): 26).3).9		Shrinka Est. iner	ge Moistur rt material	e Conten (%):	t (%): 21.5 2%		
well on Sa oisture C oisture C st. Unc. C st. Unc. C	aturation (ontent be ontent aft comp. Stre comp. Stre	ore (%): er (%):	20 20 re (kPa): 26).3).9 60	Shrinkaqo	Shrinka Est. iner Crumbli Cracking	ge Moistur	e Conten (%): shrinkage	t (%): 21.5 2% e: Nil	erate	
well on Sa oisture C oisture C st. Unc. C st. Unc. C	aturation (ontent be ontent aft comp. Stre comp. Stre	ore (%): er (%): ngth befor	20 20 re (kPa): 26).3).9 60	Shrinkage	Shrinka Est. iner Crumbli Cracking	ge Moistur rt material ng during g during s	e Conten (%): shrinkage	t (%): 21.5 2% e: Nil	erate	<u>.</u> .
well on Sa oisture C oisture C st. Unc. C st. Unc. C hrink S	aturation (ontent bei ontent aft comp. Stre comp. Stre	ore (%): er (%): ngth befor	20 20 re (kPa): 26).3).9 60	Shrinkage	Shrinka Est. iner Crumbli Cracking	ge Moistur rt material ng during g during s	e Conten (%): shrinkage	t (%): 21.5 2% e: Nil	erate	· · · · · · · · · · · · · · · · · · ·
well on Sa oisture C oisture C st. Unc. C st. Unc. C hrink S	aturation (ontent bei ontent aft comp. Stre comp. Stre	ore (%): er (%): ngth befor	20 20 re (kPa): 26).3).9 60	Shrinkage	Shrinka Est. iner Crumbli Cracking	ge Moistur rt material ng during g during s	e Conten (%): shrinkage	t (%): 21.5 2% e: Nil	erate	· · · · · · · · · · · · · · · · · · ·
well on Sa oisture C oisture C st. Unc. C st. Unc. C hrink S	aturation (ontent bei ontent aft comp. Stre comp. Stre	ore (%): er (%): ngth befor	20 20 re (kPa): 26).3).9 60	Shrinkage	Shrinka Est. iner Crumbli Cracking	ge Moistur rt material ng during g during s	e Conten (%): shrinkage	t (%): 21.5 2% e: Nil		· · · · · · · · · · · · · · · · · · ·
loisture C loisture C st. Unc. C st. Unc. C st. Unc. C hrink S	aturation (ontent bei ontent aft comp. Stre comp. Stre comp. Stre	ore (%): er (%): ngth befor	20 20 re (kPa): 26).3).9 60	Shrinkage	Shrinka Est. iner Crumbli Cracking	ge Moistur rt material ng during g during s	e Conten (%): shrinkage	t (%): 21.5 2% e: Nil	erate	· · · · · · · · · · · · · · · · · · ·

APPENDIX C:

CSIRO Sheet BTF 18

Foundation Maintenance and Footing Performance: A Homeowner's Guide

Foundation Maintenance and Footing Performance: A Homeowner's Guide

BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

Causes of Movement

Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

GENERAL DEFINITIONS OF SITE CLASSES						
Class	Foundation					
А	Most sand and rock sites with little or no ground movement from moisture changes					
S	Slightly reactive clay sites with only slight ground movement from moisture changes					
М	Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes					
Н	Highly reactive clay sites, which can experience high ground movement from moisture changes					
Е	Extremely reactive sites, which can experience extreme ground movement from moisture changes					
A to P	Filled sites					
Р	Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise					

Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- · Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

Unevenness of Movement

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

Effects of Uneven Soil Movement on Structures

Erosion and saturation

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.

As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical - i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

Trees can cause shrinkage and damage

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

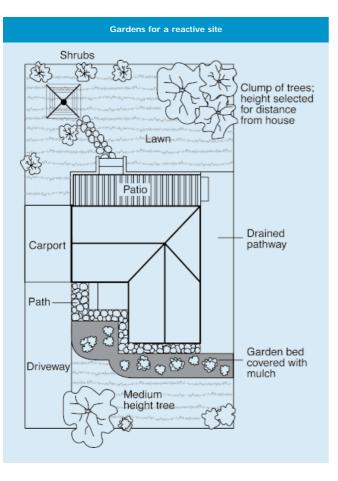
Prevention/Cure

Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS								
Description of typical damage and required repair	Approximate crack width limit (see Note 3)	Damage category						
Hairline cracks	<0.1 mm	0						
Fine cracks which do not need repair	<1 mm	1						
Cracks noticeable but easily filled. Doors and windows stick slightly	<5 mm	2						
Cracks can be repaired and possibly a small amount of wall will need to be replaced. Doors and windows stick. Service pipes can fracture. Weathertightness often impaired	5–15 mm (or a number of cracks 3 mm or more in one group)	3						
Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted	15–25 mm but also depend on number of cracks	4						

should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

Warning: Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

Existing trees

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited