Residential Subdivision The Gardens - Stage 2 Site Classification

Medowie Road, Medowie

NEW19P-0143A-AA 4 December 2020



**GEOTECHNICAL I LABORATORY I EARTHWORKS I QUARRY I CONSTRUCTION MATERIAL TESTING** 

4 December 2020

McCloy Project Management Pty Ltd Suite 2, Ground Floor, 317 Hunter Street NEWCASTLE NSW 2300

#### Attention: Mr Rylan Gibson

Dear Sir,

## RE: RESIDENTIAL SUBDIVISION – THE GARDENS – STAGE 2 Nos. 688 TO 730 MEDOWIE ROAD, MEDOWIE SITE CLASSIFICATION (LOTS 201 TO 223)

Please find enclosed our geotechnical report for Stage 2 of "The Gardens" residential subdivision, located at Nos. 688 to 730 Medowie Road, Medowie.

The report provides site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs and Footings*', for Stage 2 (Lots 201 to 223), following completion of site regrade works.

If you have any questions regarding this report, please do not hesitate to contact Ben Bunting, Shannon Kelly, or the undersigned.

For and on behalf of Qualtest Laboratory (NSW) Pty Ltd

Jason Lee Principal Geotechnical Engineer

# Table of Contents:

| 1.0 |     | Introduction                       | 1  |
|-----|-----|------------------------------------|----|
| 2.0 |     | Desktop Study                      | 1  |
| 3.0 |     | Field Work                         | 1  |
| 4.0 |     | Site Description                   | 2  |
|     | 4.1 | Site Regrade Works                 | .2 |
|     | 4.2 | Surface Conditions                 | .2 |
|     | 4.3 | Subsurface Conditions              | .5 |
| 5.0 |     | Laboratory Testing                 | 7  |
| 6.0 |     | Site Classification to AS2870-2011 | 9  |
| 7.0 |     | Limitations                        | 11 |

## Attachments:

- Figure AA1: Site Plan and Approximate Test Locations
- Appendix A: Engineering Logs of Boreholes
- Appendix B: Results of Laboratory Testing
- Appendix C: CSIRO Sheet BTF 18 Foundation Maintenance and Footing Performance

# 1.0 Introduction

Qualtest Laboratory NSW Pty Ltd (Qualtest) is pleased to present this geotechnical report on behalf of McCloy Development Management Pty Ltd (McCloy), for Stage 2 of 'The Gardens' residential subdivision, located at Nos. 688 to 730 Medowie Road, Medowie.

Based on the brief and drawing provided by the client, Stage 2 is understood to include 23 residential allotments (Lots 201 to 223).

The scope of work for the geotechnical investigation included providing site classification with respect to reactive soils, in accordance with the requirements of AS2870-2011 '*Residential Slabs and Footings*', for Stage 2 following completion of site regrade works which included controlled filling of Lots 201 to 213 and 215 to 217.

This report presents the results of the field work investigations and laboratory testing, and provides recommendations for the scope outlined above.

## 2.0 Desktop Study

The scope of work has included a review of the following reports completed by Qualtest:

- Geotechnical Assessment, 'Proposed Residential Subdivision, Medowie Gardens, 688 to 730 Medowie Road, Medowie, (Report Reference: NEW19P-00143-AA, dated 27 November 2019);
- Site Classification, 'Residential Subdivision, Medowie Road, Medowie, (Report Reference: NEW19P-00143-AC, dated 1 July 2020); and,
- Level 1 Site Re-grade Assessment Report, 'The Gardens Subdivision Stage 2, Medowie Road, Medowie, (Qualtest Report Reference: NEW20P-0022A-AA, dated 1 December 2020).

This report includes a summary of selected results from the previous reports where applicable.

# 3.0 Field Work

Field work investigations were carried out on 16 November 2020, comprising

- of: Excavation of 12 boreholes (BH201 to BH212) using a 2.7 tonne excavator with a 300mm diameter auger, to depths of between 2.00m and 2.10m;
- Undisturbed samples (U50 tubes) were taken for subsequent laboratory testing; and,
- Boreholes were backfilled with the excavation spoil and compacted using the excavator auger and tracks.

Investigations were carried out by an experienced Geotechnical Engineer from Qualtest who located the boreholes, carried out the testing and sampling, produced field logs of the boreholes, and made observations of the site surface conditions.

Approximate borehole locations are shown on the attached Figure AA1.

Engineering logs of the boreholes are presented in Appendix A.

# 4.0 Site Description

## 4.1 Site Regrade Works

Site re-grading works were conducted between 20 August 2020 and 10 November 2020.

Re-grade works included filling within Lots 201 to 213 and 215 to 217, along with cut / fill works performed for the foundation of a proposed retaining wall, located along the back of Lot 203 to 211, adjacent to Medowie Road.

Prior to filling, re-grade areas were stripped of topsoil and unsuitable material to expose the suitable natural foundation profile. Re-grade works then consisted of a proof roll assessment of the foundation prior to filling with approved site fill to design finish levels.

Filling was performed using either imported material from a nearby site located at Raymond Terrace (Stage 6 of the Potters Lane development), and/or site material won from excavations cut from around the site.

The fill material could generally be described as mixtures of Residual (CI-CH) Sandy CLAY, medium to high plasticity, brown / grey / red / orange in colour, with fine to coarse grained Sand and fine to medium grained Gravel.

The approximate depth of fill placed ranged in the order of 0.1m to about 1.2m, with the deepest filling performed along the front of Lots 201 to 211. The approximate maximum depth of fill placed over the lots ranged in the order of:

- 1.2m on Lots 201 to 211;
- 0.3m on Lots 212 to 213 and 215 to 217.

The fill was compacted in maximum lifts of 0.3m thickness. Any unsuitable or deleterious material within the fill was removed by hand or mechanical means prior to final compaction of the material.

As the geotechnical testing authority engaged for the project, we state that the filling performed for the re-grade areas within Stage 2 was carried out to Level 1 criteria as defined in Clause 8.2 – Section 8 of AS3798-2007, "Guidelines on Earthworks for Commercial and Residential Developments".

At the time of the field investigations on 13 October 2020, regrade works had been completed; however, multiple lots were proposed to have between 0.20m and 0.30m of topsoil added. Some fill stockpiles (mostly trench backfill and sand) were still present on a number of lots. It is understood and expected that the remaining stockpiles will be removed prior to development on the lots.

The recommendations of this report are based on the understanding that any existing lot re-grade works are limited to the controlled earthworks works supervised by Qualtest, and placement of low reactivity topsoil material such that total topsoil depths do not exceed 0.4m. Qualtest should be informed without delay if additional earthworks are known to have been carried out.

## 4.2 Surface Conditions

The site is located east of Medowie Road, Medowie. The site comprises Stage 1 of the Medowie Gardens residential subdivision at 688 to 730 Medowie Rd, Medowie. The site comprises 23 proposed residential allotments and associated pavements, covering a total area of approximately 1.84ha. The site of the proposed development is shown on Figure AA1.

Stage 2 is bounded to the north by the existing Stage 1, to the east and south by future stages of The Gardens residential subdivision which currently comprises rural residential lots including sections of bushland, and to the west by Medowie Road.

Natural surface slopes are typically in the order of about 2° to 4° towards the west and northwest. Filling has been carried out within Stage 2 (as summarised in Section 4.1), resulting in gentler surface slopes, generally in the order of 1° to 2°.

At the time of inspection, the site had been cleared of trees and grass coverage was only observed to be present on Lots 220 to 221.

On the day of the investigation, stormwater systems had been installed, and the site was judged to be reasonably well drained.

Site access was from Medowie Road, with trafficability judged to be good by way of 4WD.

Photographs of the site taken on the day of the site investigations are shown below.



**Photograph 1:** From eastern boundary of Lot 201, facing south.





**Photograph 3:** From near western boundary of Lot 202, facing east.

**Photograph 2:** From eastern boundary of Lot 201, facing west.





**Photograph 5:** From near western boundary of Lots 205 and 206, facing southeast.

**Photograph 4:** From near western boundary of Lot 202, facing south.



**Photograph 6:** From near western boundary of Lots 205 and 206, facing south.



**Photograph 7:** From near western boundary of Lots 208 and 209, facing north.



**Photograph 9:** From northern corner of Lot 212, facing east.



**Photograph 11:** From near eastern boundary of Lots 214 and 218, facing southwest.



**Photograph 13:** From near eastern boundary of Lot 219, facing southwest.



**Photograph 8:** From near western boundary of Lots 208 and 209, facing east.



**Photograph 10:** From northern corner of Lot 212, facing south.



**Photograph 12:** From near eastern boundary of Lots 214 and 218, facing north.



**Photograph 14:** From near eastern boundary of Lot 219, facing north.



**Photograph 15:** From northeast corner of Lot 219, facing southwest.



**Photograph 16:** From northeast corner of Lot 219, facing northwest.



**Photograph 17:** From north-eastern corner of Lot 220, facing south.



**Photograph 19:** From north-western corner of Lot 223, facing east.

## 4.3 Subsurface Conditions



**Photograph 18:** From north-eastern corner of Lot 220, facing west.



**Photograph 20:** From north-western corner of Lot 223, facing south.

Reference to the 1:100,000 Newcastle Coalfield Regional Geology Sheet 9231 indicates the site to be underlain by the Permian Aged Tomago Coal Measures, which are characterised by Siltstone, Sandstone, Coal, Tuff and Claystone rock types.

Table 1 presents a summary of the typical soil types encountered on site during the field investigations, divided into representative geotechnical units.

Table 2 contains a summary of the distribution of the above geotechnical units at the borehole locations.

| Unit | Soil Type                                                   | Description                                                                                                                                                                                                                        |  |  |  |  |  |  |
|------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1A   | UNCONTROLLED FILL                                           | SAND – fine to medium grained, dark grey. (As a stockpile)                                                                                                                                                                         |  |  |  |  |  |  |
|      |                                                             | Sandy CLAY – medium to high plasticity, grey to dark grey<br>and brown to pale brown, fine to coarse grained (mostly fine<br>to medium grained) sand, with some fine to coarse grained<br>rounded to sub-angular gravel in places. |  |  |  |  |  |  |
| 1B   | CONTROLLED FILL                                             | CLAY – medium to high plasticity, red-brown to brown and orange-brown, with some fine to medium grained sand.                                                                                                                      |  |  |  |  |  |  |
|      |                                                             | Gravelly Sandy CLAY – medium plasticity, grey with some<br>brown, fine to coarse grained sand, fine to coarse grained<br>rounded to sub-angular gravel.                                                                            |  |  |  |  |  |  |
| 2    | TOPSOIL                                                     | Sandy CLAY – low plasticity, grey-brown, fine grained sand, root affected.                                                                                                                                                         |  |  |  |  |  |  |
| 3    | COLLUVIUM                                                   | Sandy CLAY – low to medium plasticity, pale brown, fine<br>grained sand.<br>CLAY – medium plasticity, pale brown trace red-brown, with<br>some fine grained sand.                                                                  |  |  |  |  |  |  |
| 4    | RESIDUAL SOIL                                               | CLAY – medium to high plasticity, pale orange-brown and<br>red-brown, with some fine grained sand.<br>Sandy CLAY – medium to high plasticity, pale orange-brown<br>and red-brown to pale brown, fine grained sand.                 |  |  |  |  |  |  |
| 5    | EXTREMELY<br>WEATHERED (XW)<br>ROCK with soil<br>properties | Not Encountered within investigation.                                                                                                                                                                                              |  |  |  |  |  |  |

#### TABLE 1 – SUMMARY OF GEOTECHNICAL UNITS AND SOIL TYPES

No groundwater was encountered in the boreholes during the limited time that they remained open on the day of the field investigation.

It should be noted that groundwater conditions can vary due to rainfall and other influences including regional groundwater flow, temperature, permeability, recharge areas, surface condition, and subsoil drainage.

### TABLE 2 – SUMMARY OF GEOTECHNICAL UNITS ENCOUNTERED AT BOREHOLE LOCATIONS

|                       | Unit 1A              | Unit 1B            | Unit 2        | Unit 3        | Unit 4           | Unit 5      |  |  |  |  |  |
|-----------------------|----------------------|--------------------|---------------|---------------|------------------|-------------|--|--|--|--|--|
| Location              | Uncontrolled<br>Fill | Controlled<br>Fill | Topsoil       | Colluvium     | Residual<br>Soil | XW Rock     |  |  |  |  |  |
|                       |                      |                    | Depth in      | metres        |                  |             |  |  |  |  |  |
| Current Investigation |                      |                    |               |               |                  |             |  |  |  |  |  |
| TP201                 | -                    | 0.00 - 1.00        | -             | -             | 1.00 - 2.00      | -           |  |  |  |  |  |
| TP202                 | -                    | 0.00 – 1.20        | -             | -             | 1.20 – 2.10      | -           |  |  |  |  |  |
| TP203                 | -                    | 0.00 – 1.30        | -             | 1.30 – 1.50   | 1.50 – 2.00      | -           |  |  |  |  |  |
| TP204                 | -                    | 0.00 – 1.30        | -             | -             | 1.30 – 2.10      | -           |  |  |  |  |  |
| TP205                 | -                    | 0.00 - 1.20        | -             | -             | 1.20 - 2.00      | -           |  |  |  |  |  |
| TP206                 | -                    | -                  | 0.00 - 0.15   | -             | 0.15 – 2.10      | -           |  |  |  |  |  |
| TP207                 | -                    | 0.00 - 0.40        | -             | -             | 0.40 - 2.10      | -           |  |  |  |  |  |
| TP208                 | -                    | -                  | 0.00 - 0.15   | -             | 0.15 – 2.10      | -           |  |  |  |  |  |
| TP209                 | -                    | 0.00 – 0.45        | -             | -             | 0.45 – 2.10      | -           |  |  |  |  |  |
| TP210                 | 0.00 – 0.05          | -                  | -             | -             | 0.05 – 2.00      | -           |  |  |  |  |  |
| TP211                 | -                    | -                  | 0.00 - 0.20   | 0.20 – 0.50   | 0.50 – 2.00      | -           |  |  |  |  |  |
| TP212                 | -                    | -                  | 0.00 - 0.20   | 0.20 – 0.50   | 0.50 – 2.00      | -           |  |  |  |  |  |
|                       | Previous             | Investigation (    | NEW19P-0143-  | AC, dated 1 J | luly 2020)       |             |  |  |  |  |  |
| TP101                 | -                    | 0.00 - 1.70        | -             | -             | 1.70 - 2.00      | -           |  |  |  |  |  |
| TP104                 | -                    | 0.00 - 0.60        | -             | -             | 0.60 - 2.00      | -           |  |  |  |  |  |
| TP105                 | -                    | -                  | 0.00 - 0.35   | 0.35 - 0.60   | 0.60 - 2.00      | -           |  |  |  |  |  |
| TP106                 | -                    | -                  | 0.00 - 0.40   | 0.40 - 0.80   | 0.80 - 1.90      | 1.90 - 2.00 |  |  |  |  |  |
|                       | Previous Inve        | stigation (NEW     | /19P-0143-AA, | dated 27 Nov  | vember 2019)     |             |  |  |  |  |  |
| TP24                  | -                    | -                  | 0.00 - 0.30   | 0.30 - 0.70   | 0.70 - 2.00      | -           |  |  |  |  |  |
| TP25                  | -                    | -                  | 0.00 - 0.20   | 0.20 - 0.50   | 0.50 - 2.00      | -           |  |  |  |  |  |
| TP26                  | 0.00 - 0.30          | -                  | -             | -             | 0.30 - 2.00      | -           |  |  |  |  |  |
| TP27                  | -                    | -                  | 0.00 - 0.25   | -             | 0.25 - 2.00      | -           |  |  |  |  |  |
| TP34                  | -                    | -                  | 0.00 - 0.20   | -             | 0.20 - 2.00      | -           |  |  |  |  |  |

# 5.0 Laboratory Testing

Samples collected during the field investigations were returned to our NATA accredited Warabrook Laboratory for testing which comprised of:

- (10 no.) Shrink / Swell tests; and,
- (5 no.) Atterberg Limits tests.

Due to the friable nature of site soils, some samples were unsuitable for Shrink / Swell testing, and Atterberg Limits tests were substituted.

Results of the laboratory testing are included in Appendix B, with a summary of the Shrink/Swell test and Atterberg Limits test results presented in Table 3 and Table 4, respectively.

| Location | Depth (m)          | Material Description                       | lss (%) |
|----------|--------------------|--------------------------------------------|---------|
| BH202    | 0.50 – 0.70        | FILL: (CI) Sandy CLAY                      | 1.5     |
| BH203    | 0.05 – 0.20        | FILL: (CH) Sandy CLAY                      | 1.2     |
| BH203    | 0.30 – 0.50        | FILL: (CI) Sandy CLAY                      | 1.5     |
| BH205    | 0.30 – 0.50        | FILL: (CH) Sandy CLAY                      | 2.2     |
| BH206    | 0.60 – 0.85        | (CH) CLAY                                  | 1.8     |
| BH207    | 0.20 – 0.50        | FILL: (CH) CLAY                            | 1.4     |
| BH208    | 1.10 – 1.30        | (CH) CLAY                                  | 1.9     |
| BH209    | 0.15 – 0.50        | FILL: (CH) Sandy CLAY                      | 1.4     |
| BH211    | 0.60 – 0.80        | (CH) Sandy CLAY                            | 1.7     |
| BH212    | 0.90 – 1.10        | (CH) CLAY                                  | 1.3     |
|          | Previous Inves     | tigation (NEW19P-0143-AC, dated 1 July 202 | 20)     |
| TP101    | 0.70 - 0.80        | FILL: (CH) Sandy CLAY                      | 1.0     |
| TP104    | 1.10 - 1.35        | (CH) CLAY                                  | 2.4     |
| TP106    | 1.10 - 1.25        | (CI) Sandy CLAY                            | 1.9     |
| I        | Previous Investigo | tion (NEW19P-0143-AA, dated 27 November    | r 2019) |
| TP24     | 0.90 - 1.05        | (CH) CLAY                                  | 1.5     |
| TP25     | 0.80 - 1.00        | (CH) CLAY                                  | 1.9     |
| TP26     | 0.30 - 0.55        | (CH) CLAY                                  | 1.5     |
| TP34     | 0.30 - 0.50        | (CI) Sandy CLAY                            | 1.0     |

### TABLE 3 – SUMMARY OF SHRINK / SWELL TESTING RESULTS

| Location | Sample<br>Depth (m) | Material Description          | Liquid<br>Limit<br>(%) | Plastic<br>limit<br>(%) | Plasticity<br>Index<br>(%) | Linear<br>Shrinkage<br>(%) |
|----------|---------------------|-------------------------------|------------------------|-------------------------|----------------------------|----------------------------|
| BH201    | 0.20 – 0.35         | FILL: (CI) Sandy CLAY         | 43                     | 17                      | 26                         | 13.0                       |
| BH201    | 0.90 - 1.00         | FILL: (CI) Sandy CLAY         | 37                     | 14                      | 23                         | 15.0                       |
| BH201    | 1.00 - 1.20         | (CH) CLAY                     | 58                     | 21                      | 37                         | 15.0                       |
| BH204    | 0.50 – 0.80         | FILL: (CH) Sandy CLAY         | 49                     | 14                      | 35                         | 12.5                       |
| BH210    | 0.70 – 0.90         | (CH) CLAY                     | 56                     | 28                      | 28                         | 12.5                       |
|          | Previo              | ous Investigation (NEW19P-014 | 3-AC, date             | ed 1 July               | 2020)                      |                            |
| TP104    | 0.05 - 0.15         | FILL: (CH) CLAY               | 59                     | 23                      | 36                         | 15.0                       |
| TP105    | 0.40 - 0.55         | (CI) Sandy CLAY               | 45                     | 22                      | 23                         | 12.0                       |

TABLE 4 – SUMMARY OF ATTERBERG LIMITS TESTING RESULTS

## 6.0 Site Classification to AS2870-2011

Based on the results of the field work and laboratory testing, residential lots located within Stage 2 of The Gardens residential subdivision located at 688 to 730 Medowie Road, Medowie, as shown on Figure AA1, are classified in their current condition in accordance with AS2870-2011 'Residential Slabs and Footings', as shown in Table 5.

### TABLE 5 – SITE CLASSIFICATION TO AS2870-2011

| Stage | Lot Numbers                | Site Classification |
|-------|----------------------------|---------------------|
| 2     | 201 to 213, and 215 to 217 | H1                  |
| Σ     | 214, and 218 to 223        | м                   |

A characteristic free surface movement in the range of 40mm to 60mm is estimated for lots classified as **Class 'H1'**.

A characteristic free surface movement in the range of 20mm to 40mm is estimated for lots classified as **Class 'M'**.

The effects of changes to the soil profile by additional cutting and filling and the effects of past and future trees should be considered in selection of the design value for differential movement. If site re-grading works involving cutting or filling are performed after the date of this assessment the classification may change and further advice should be sought.

Final site classification will be dependent on the type of fill and level of supervision carried out. Re-classification of lots should be confirmed by the geotechnical authority at the time of construction following any site re-grade works. Footings for the proposed development should be designed and constructed in accordance with the requirements of AS2870-2011.

The classification presented above assumes that:

- All footings are founded in controlled fill (if applicable) or in the natural clayey soils or rock below all non-controlled fill, topsoil material and root zones, and fill under slab panels meets the requirements of AS2870-2011, in particular, the root zone must be removed prior to the placement of fill materials beneath slabs;
- The performance expectations set out in Appendix B of AS2870-2011 are acceptable, and that site foundation maintenance is undertaken to avoid extremes of wetting and drying;
- Footings are to be founded outside of or below all zones of influence resulting from existing or future service trenches;
- The constructional and architectural requirements for reactive clay sites set out in AS2870-2011 are followed;
- Adherence to the detailing requirement outlined in Section 5 of AS2870-2011 'Residential Slabs and Footings' is essential, in particular Section 5.6, 'Additional requirements for Classes M, H1, H2 and E sites' including architectural restrictions, plumbing and drainage requirements; and,
- Site maintenance complies with the provisions of CSIRO Sheet BTF 18, "Foundation Maintenance and Footing Performance: A Homeowner's Guide", a copy of which is attached in Appendix C.

All structural elements on all lots regardless of their site classification should be supported on footings founded beneath all uncontrolled fill, layers of inadequate bearing capacity, soft/loose, or other potentially deleterious material.

If any areas of uncontrolled fill of depths greater than 0.4m are encountered during construction, footings should be designed in accordance with engineering principles for Class 'P' sites.

# 7.0 Limitations

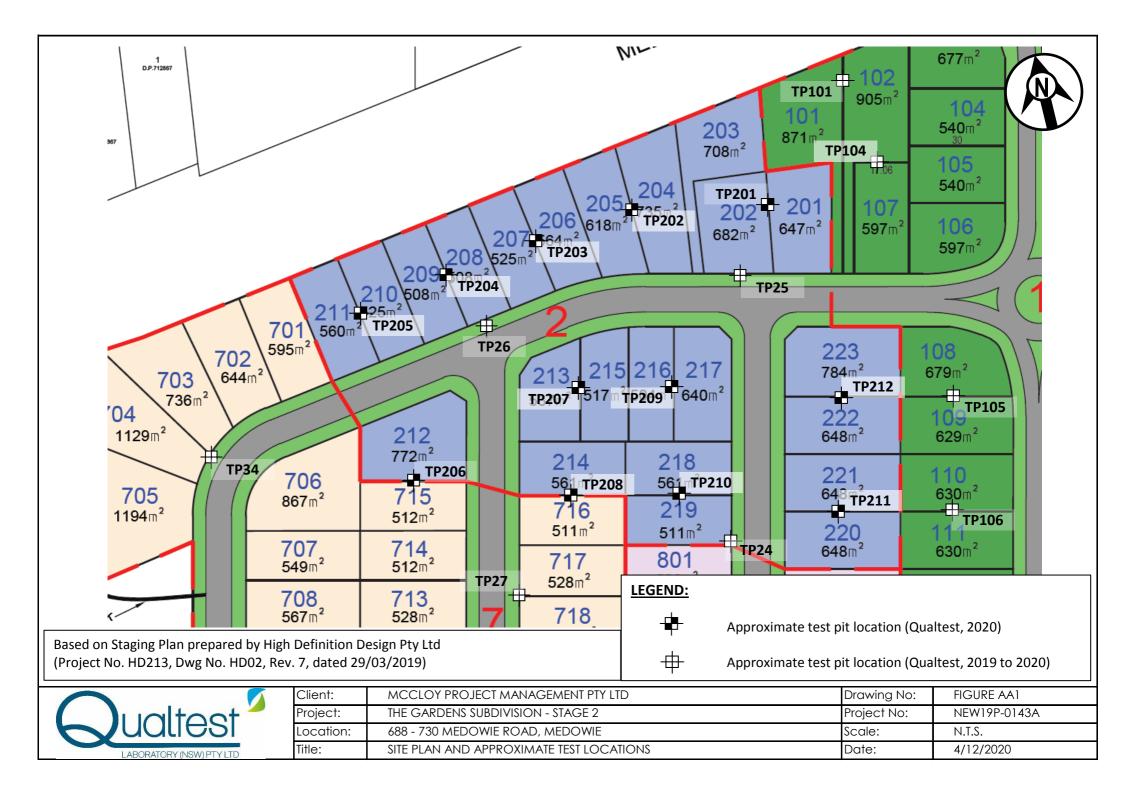
The findings presented in the report and used as the basis for recommendations presented herein were obtained using normal, industry accepted geotechnical design practices and standards. To our knowledge, they represent a reasonable interpretation of the general conditions of the site.

The extent of testing associated with this assessment is limited to discrete borehole locations. It should be noted that subsurface conditions between and away from the borehole locations may be different to those observed during the field work and used as the basis of the recommendations contained in this report.

If subsurface conditions encountered during construction differ from those given in this report, further advice should be sought without delay.

Data and opinions contained within the report may not be used in other contexts or for any other purposes without prior review and agreement by Qualtest. If this report is reproduced, it must be in full.

If you have any further questions regarding this report, please do not hesitate to contact Shannon Kelly or the undersigned.


For and on behalf of Qualtest Laboratory (NSW) Pty Ltd.

an le.

Jason Lee Principal Geotechnical Engineer

# FIGURE AA1:

Site Plan and Approximate Test Locations



# **APPENDIX A:**

**Engineering Logs of Boreholes** 



**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

CLIENT:

MCCLOY PROJECT MANAGEMENT PTY LTD

BOREHOLE NO:

BH201

1 OF 1

NEW19P-0143A

LOGGED BY:

PAGE:

DATE:

JOB NO:

BB 16/11/20

|                 |                                                             | TYPE:<br>OLE DIAM                                                                                                                 |           |                                                                                             | EXCA<br>300 m                                                                                  |                                                                                            | R WITH AUGER SUR DAT                                                                                                                                                                                                                      | FACE RL:<br>UM:                    |                                                                            |                        |                                                                                                    |                                                                                                  |                                                                                                                                          |
|-----------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Drill                                                       | ling and San                                                                                                                      | npling    |                                                                                             |                                                                                                |                                                                                            | Material description and profile information                                                                                                                                                                                              |                                    |                                                                            |                        | Fiel                                                                                               | d Test                                                                                           |                                                                                                                                          |
| METHOD          | WATER                                                       | SAMPLES                                                                                                                           | RL<br>(m) | DEPTH<br>(m)                                                                                | GRAPHIC<br>LOG                                                                                 | CLASSIFICATION<br>SYMBOL                                                                   | MATERIAL DESCRIPTION: Soil type, plastici<br>characteristics,colour,minor componer                                                                                                                                                        | ity/particle<br>hts                | MOISTURE<br>CONDITION                                                      | CONSISTENCY<br>DENSITY | Test Type                                                                                          | Result                                                                                           | Structure and additional observations                                                                                                    |
|                 |                                                             | 0.20m<br>U50<br>0.35m                                                                                                             |           | -<br>-<br>-<br>0.5_<br>-                                                                    |                                                                                                | СІ                                                                                         | FILL: Sandy CLAY - medium plasticity, bro<br>medium grained sand.                                                                                                                                                                         |                                    | M<br>«<br>M                                                                | H / Fb                 |                                                                                                    |                                                                                                  | FILL - CONTROLLED                                                                                                                        |
| AD/T            | Not Encountered                                             | 0.90m<br>U50<br>1.887                                                                                                             |           | -<br>-<br>1. <u>0</u>                                                                       |                                                                                                |                                                                                            | grey and brown, fine to coarse grained (m<br>medium grained) sand.<br>1.00m<br>CLAY - medium to high plasticity, pale ora<br>and red-brown, with some fine grained sar                                                                    | ostly fine to                      | <sup>d</sup> M ∼ W                                                         | VSt                    | HP                                                                                                 | 380<br>380                                                                                       | RESIDUAL SOIL                                                                                                                            |
|                 |                                                             | 1.20m                                                                                                                             |           |                                                                                             |                                                                                                |                                                                                            | Red-brown.                                                                                                                                                                                                                                |                                    | M < W <sub>P</sub>                                                         | Н                      | ΗP                                                                                                 | 550                                                                                              |                                                                                                                                          |
|                 |                                                             |                                                                                                                                   |           | -                                                                                           |                                                                                                |                                                                                            | Hole Terminated at 2.00 m                                                                                                                                                                                                                 |                                    |                                                                            |                        |                                                                                                    |                                                                                                  |                                                                                                                                          |
| <u>Wat</u><br>▲ | Wat<br>(Dat<br>Wat<br>I Wat<br>I Wat<br><u>Ita Cha</u><br>G | ter Level<br>te and time sł<br>ter Inflow<br>ter Outflow<br><b>anges</b><br>iradational or<br>ansitional stra<br>efinitive or dis | ita       | Notes, Sa<br>U <sub>50</sub><br>CBR<br>E<br>ASS<br>B<br>Field Test<br>PID<br>DCP(x-y)<br>HP | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S<br>Bulk S<br>Photoi<br>Dynan | Diame<br>ample f<br>nmenta<br>jar, se<br>culfate S<br>c bag, a<br>ample<br>onisationic pen | ter tube sample<br>ter tube sample<br>or CBR testing<br>al sample<br>aled and chilled on site)<br>oil Sample<br>air expelled, chilled)<br>on detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa) | S S<br>F F<br>St S<br>VSt V<br>H H | /ery Soft<br>Soft<br>Stiff<br>/ery Stiff<br>/ard<br>Friable<br>V<br>L<br>D | Vi<br>La               | 25<br>25<br>50<br>10<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | CS (kPa<br>25<br>5 - 50<br>) - 100<br>)0 - 200<br>)0 - 200<br>)0 - 400<br>400<br>pose<br>n Dense | D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit<br>U <sub>L</sub> Liquid Limit<br>Density Index <15%<br>Density Index 15 - 35% |



## **ENGINEERING LOG - BOREHOLE**

**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD BOREHOLE NO:

BH202

1 OF 1

NEW19P-0143A

JOB NO: LOGGED BY:

PAGE:

DATE:

BB 16/11/20

|                  |                 | YPE:<br>OLE DIAN                                                                                                                    |           |                                                                                                         | EXCA<br>300 m                                                                             |                                                                                             | DR WITH AUGER SURI                                                                                                                                                                                                                                                                                                              | FACE RL:<br>JM:                     |                                                                                    |                        |                      |                          |                                                                                                                           |
|------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------|------------------------|----------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                  | Drill           | ing and San                                                                                                                         | npling    |                                                                                                         |                                                                                           |                                                                                             | Material description and profile information                                                                                                                                                                                                                                                                                    |                                     |                                                                                    |                        | Fiel                 | d Test                   |                                                                                                                           |
| METHOD           | WATER           | SAMPLES                                                                                                                             | RL<br>(m) | DEPTH<br>(m)                                                                                            | GRAPHIC<br>LOG                                                                            | CLASSIFICATION<br>SYMBOL                                                                    | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componer                                                                                                                                                                                                                                             | ty/particle<br>its                  | MOISTURE<br>CONDITION                                                              | CONSISTENCY<br>DENSITY | Test Type            | Result                   | Structure and additional observations                                                                                     |
| AD/T             | Not Encountered | 0.50m<br>U50<br>0.70m                                                                                                               |           |                                                                                                         |                                                                                           | СІ                                                                                          | FILL: Sandy CLAY - medium plasticity, bro<br>medium grained sand.<br>0.50m<br>FILL: Sandy CLAY - medium to high plasti<br>to dark grey with some brown, fine to coars<br>sand.<br>With some fine to coarse grained rounded<br>1.20m<br>CLAY - medium to high plasticity, pale orar<br>with some red-brown, with some fine grain | city, grey<br>se grained<br>gravel. | M > Wp                                                                             | VSt<br>St-<br>VSt      | HP<br>HP<br>HP<br>HP | 180<br>250<br>200<br>300 | FILL - CONTROLLED                                                                                                         |
|                  |                 |                                                                                                                                     |           | -                                                                                                       |                                                                                           |                                                                                             | Hole Terminated at 2.10 m                                                                                                                                                                                                                                                                                                       |                                     |                                                                                    |                        |                      |                          |                                                                                                                           |
| <u>Wate</u><br>► |                 | er Level<br>e and time sl<br>er Inflow<br>er Outflow<br>anges<br>radational or<br>ansitional stra<br>finitive or dis<br>rata change | ta        | I<br><u>Notes, Sa</u><br>U <sub>50</sub><br>CBR<br>E<br>ASS<br>B<br>Field Test<br>PID<br>DCP(x-y)<br>HP | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S<br>S<br>Photoi<br>Dynan | Diame<br>ample f<br>nmenta<br>jar, se<br>ulfate S<br>c bag, a<br>ample<br>onisationic pendo | ts<br>ter tube sample<br>or CBR testing<br>al sample<br>aled and chilled on site)<br>Soil Sample<br>air expelled, chilled)<br>on detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa)                                                                                                   | S S<br>F F<br>St S<br>VSt V<br>H H  | I ncy<br>/ery Soft<br>Soft<br>irim<br>irim<br>lard<br>iriable<br>V<br>L<br>ME<br>D | V<br>Li<br>D M         | <2                   | n Dense                  | D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit<br>Liquid Limit<br>Density Index <15%<br>Density Index 15 - 35% |



CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO: LOGGED BY: DATE:

BH203 1 OF 1 NEW19P-0143A

BB

|                                                                                                                                                                                                     |                                                             | iole diam                                                                                              |                  |                                                       | EXCA<br>300 m                                                  |                                                                                                                                     | R WITH AUGER SURF                                                                                                                                                           | FACE RL:<br>JM:             |                                                                        |                        |                                        |                                                                     |                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------|------------------------|----------------------------------------|---------------------------------------------------------------------|---------------------------------------------------|
|                                                                                                                                                                                                     | Dri                                                         | lling and San                                                                                          | npling           |                                                       |                                                                |                                                                                                                                     | Material description and profile information                                                                                                                                | -                           |                                                                        |                        | Field                                  | d Test                                                              |                                                   |
| METHOD                                                                                                                                                                                              | WATER                                                       | SAMPLES                                                                                                | RL<br>(m)        | DEPTH<br>(m)                                          | GRAPHIC<br>LOG                                                 | CLASSIFICATION<br>SYMBOL                                                                                                            | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componen                                                                                         |                             | MOISTURE<br>CONDITION                                                  | CONSISTENCY<br>DENSITY | Test Type                              | Result                                                              | Structure and additional observations             |
|                                                                                                                                                                                                     |                                                             | 0.05m<br>U50<br>0.20m                                                                                  |                  | -                                                     |                                                                | СН                                                                                                                                  | FILL: CLAY - medium to high plasticity, red<br>orange-brown, with some fine to medium g<br>sand.                                                                            |                             | M < Wp                                                                 | VSt -<br>H             |                                        |                                                                     | FILL - CONTROLLED                                 |
|                                                                                                                                                                                                     |                                                             | 0.30m<br>U50<br>0.50m                                                                                  |                  | -<br>-<br>0. <u>5</u>                                 |                                                                | CI                                                                                                                                  | FILL: Sandy CLAY - medium plasticity, gre<br>some brown, fine to coarse grained sand, t<br>to coarse grained rounded to sub-angular g                                       | race fine                   | $M \sim w_{P}$                                                         | St -<br>VSt            | HP                                     | 150<br>250<br>210                                                   |                                                   |
|                                                                                                                                                                                                     | Intered                                                     |                                                                                                        |                  | -                                                     |                                                                |                                                                                                                                     | 0.90m                                                                                                                                                                       |                             |                                                                        |                        | HP                                     | 230                                                                 |                                                   |
| Lab and In Situ Tool<br>AD/T                                                                                                                                                                        | Not Encountered                                             |                                                                                                        | 1. <u>0</u><br>- |                                                       | CI                                                             | FILL: Gravelly Sandy CLAY - medium plast<br>with some brown, fine to coarse grained sa<br>coarse grained rounded to sub-angular gra | ind, fine to                                                                                                                                                                | M < w <sub>P</sub>          | VSt                                                                    | ΗP                     | 200                                    |                                                                     |                                                   |
| 7 10.0.000 Datge                                                                                                                                                                                    |                                                             |                                                                                                        |                  | -<br>1. <u>5</u>                                      |                                                                | CL                                                                                                                                  | Sandy CLAY - low to medium plasticity, pal fine grained sand.                                                                                                               | e brown,                    | M > w <sub>P</sub>                                                     | St                     | HP                                     | 190                                                                 | COLLUVIUM/RESIDUAL<br>SOIL                        |
| ngFile>> 30/11/2020 15:3.                                                                                                                                                                           |                                                             |                                                                                                        |                  | -                                                     |                                                                | СН                                                                                                                                  | CLAY - medium to high plasticity, red-brow<br>some fine grained sand.                                                                                                       | n, with                     | $M \sim w_P$                                                           | VSt                    | HP                                     | 350                                                                 | RESIDUAL SOIL — — — —                             |
| DRAFT.GPJ < <drawi< td=""><td></td><td></td><td></td><td>2.0</td><td></td><td></td><td>2.00m<br/>Hole Terminated at 2.00 m</td><td></td><td></td><td></td><td>HP</td><td>380</td><td></td></drawi<> |                                                             |                                                                                                        |                  | 2.0                                                   |                                                                |                                                                                                                                     | 2.00m<br>Hole Terminated at 2.00 m                                                                                                                                          |                             |                                                                        |                        | HP                                     | 380                                                                 |                                                   |
| 7                                                                                                                                                                                                   | GEND                                                        |                                                                                                        |                  |                                                       | 50mm                                                           | Diame                                                                                                                               | ter tube sample                                                                                                                                                             |                             | /ery Soft                                                              |                        | <2                                     | <b>CS (kP</b> ?<br>25                                               | D Dry                                             |
|                                                                                                                                                                                                     | (Da<br>– Wa<br><b>⊲ Wa</b><br>m <u>ata Ch</u><br>–- C<br>tr | ter Level<br>te and time sh<br>ter Inflow<br>ter Outflow<br>anges<br>Gradational or<br>ansitional stra | hown)            | CBR<br>E<br>ASS<br>B<br>Field Test<br>PID<br>DCP(x-y) | Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S<br>S<br>Photoi | nmenta<br>jar, se<br>culfate S<br>c bag, a<br>ample<br>onisatio                                                                     | or CBR testing<br>I sample<br>aled and chilled on site)<br>Soil Sample<br>air expelled, chilled)<br>on detector reading (ppm)<br>etrometer test (test depth interval shown) | F F<br>St S<br>VSt V<br>H F | Soft<br>Firm<br>Stiff<br>/ery Stiff<br>lard<br>Friable<br>V<br>L<br>MD | Lo                     | 50<br>10<br>20<br>>4<br>ery Lo<br>pose | 5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400<br>00se<br>n Dense | Density Index <15%<br>Density Index 15 - 35%      |
| QT LIB                                                                                                                                                                                              |                                                             | efinitive or dis<br>trata change                                                                       | SUCL             | HP                                                    |                                                                |                                                                                                                                     | meter test (UCS kPa)                                                                                                                                                        |                             | D<br>VD                                                                | D                      | ense<br>ery De                         |                                                                     | Density Index 65 - 85%<br>Density Index 85 - 100% |



**PROJECT:** MEDOWIE GARDENS - STAGE 2

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

BOREHOLE NO:

BH204

1 OF 1

NEW19P-0143A

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

JOB NO: LOGGED BY:

PAGE:

DATE:

BB 16/11/20

|                                                                                                                                                                      |                  | TYPE:<br>IOLE DIAN                                                      |           |                                     | EXCA<br>300 m                                |                                                                | R WITH AUGER SURF                                                                                                                   | FACE RL:<br>JM:                    |                                                                          |                        |                                            |                                                                          |                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------|-----------|-------------------------------------|----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------|------------------------|--------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                      | Dri              | lling and San                                                           | npling    |                                     |                                              |                                                                | Material description and profile information                                                                                        |                                    |                                                                          |                        | Fiel                                       | d Test                                                                   |                                                                                                                             |
| METHOD                                                                                                                                                               | WATER            | SAMPLES                                                                 | RL<br>(m) | DEPTH<br>(m)                        | GRAPHIC<br>LOG                               | CLASSIFICATION<br>SYMBOL                                       | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componen                                                 | y/particle<br>ts                   | MOISTURE<br>CONDITION                                                    | CONSISTENCY<br>DENSITY | Test Type                                  | Result                                                                   | Structure and additional observations                                                                                       |
|                                                                                                                                                                      |                  |                                                                         |           | -                                   |                                              | CI                                                             | FILL: Sandy CLAY - medium plasticity, brow<br>medium grained sand, trace fine to medium<br>angular gravel.                          |                                    | M < Wp                                                                   | VSt                    |                                            |                                                                          | FILL - CONTROLLED                                                                                                           |
|                                                                                                                                                                      |                  | 0.50m<br>U50                                                            |           | -<br>0. <u>5</u><br>-               |                                              |                                                                | FILL: Sandy CLAY - medium to high plastic<br>fine to coarse grained sand, trace fine to m<br>grained roudned to sub-angular gravel. |                                    |                                                                          |                        | HP                                         | 170<br>260                                                               |                                                                                                                             |
| ool<br>AD/T                                                                                                                                                          | Not Encountered  | 0.80m                                                                   |           | -<br>-<br>1.0_                      |                                              | СН                                                             |                                                                                                                                     |                                    |                                                                          | St -<br>VSt            | HP                                         | 230                                                                      |                                                                                                                             |
| 0.0.000 Datgel Lab and In Situ Toc $I$                                                                                                                               | Not              |                                                                         |           | -                                   |                                              |                                                                | 1.30m<br>Sandy CLAY - medium plasticity, pale brow<br>grained sand.                                                                 | <br>n, fine                        | M > w <sub>P</sub>                                                       |                        | HP                                         | 210<br>210                                                               | RESIDUAL SOIL                                                                                                               |
| 01 LIB 1.1GLB Log NON-CORED BOREHOLE - TEST PIT NEW19P-0143A-AA LOGS DRAFT GPJ < <drawingfile>&gt; 30/112020 15:37 10.0.000 Datget Lab and in Stu Tool</drawingfile> |                  |                                                                         |           | 1.5_<br>-<br>-<br>2.0_              |                                              | СІ                                                             | 2.10m                                                                                                                               |                                    |                                                                          | VSt                    | HP                                         | 230                                                                      |                                                                                                                             |
| TEST PIT NEW19P-0143A-AALOC                                                                                                                                          |                  |                                                                         |           | -                                   |                                              |                                                                | Hole Terminated at 2.10 m                                                                                                           |                                    |                                                                          |                        |                                            |                                                                          |                                                                                                                             |
| g NON-CORED BOREHOLE -                                                                                                                                               | –<br>(Da<br>— Wa | ter Level<br>ite and time sl<br>ter Inflow<br>ter Outflow               | hown)     | Notes, Sa<br>U₅₀<br>CBR<br>E<br>ASS | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S | Diame<br>ample f<br>nmenta<br>jar, sea<br>ulfate S<br>c bag, a | <b>s</b><br>er tube sample<br>or CBR testing<br>I sample<br>aled and chilled on site)<br>oil Sample<br>ir expelled, chilled)        | S S<br>F F<br>St S<br>VSt V<br>H F | ncy<br>/ery Soft<br>foft<br>irm<br>/tiff<br>/ery Stiff<br>lard<br>riable |                        | <2<br>25<br>50<br>10<br>20                 | <b>CS (kPa</b><br>25<br>5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400 | D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit                                                                   |
| QT LIB 1.1.GLB Lo                                                                                                                                                    | G<br>tr          | Gradational or<br>cansitional stra<br>Definitive or dis<br>trata change | ata       | Field Test<br>PID<br>DCP(x-y)<br>HP | i <b>s</b><br>Photoi<br>Dynan                | onisatio                                                       | n detector reading (ppm)<br>trometer test (test depth interval shown)<br>meter test (UCS kPa)                                       | Density                            | V<br>L<br>D<br>VD                                                        | Lo<br>M<br>D           | ery Lo<br>bose<br>lediun<br>ense<br>ery Do | n Dense                                                                  | Density Index <15%<br>Density Index 15 - 35%<br>Density Index 35 - 65%<br>Density Index 65 - 85%<br>Density Index 85 - 100% |



### **ENGINEERING LOG - BOREHOLE**

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO: LOGGED BY:

DATE:

BH205 1 OF 1

NEW19P-0143A

BB

|                                                                                                                                                         |                                                           | YPE:<br>OLE DIAN                                         |           |                                                                                             | EXCA                                                                                          | VATC                                                                                                        | R WITH AUGER SURI                                                                                                                                                                                                                                                                                                                                                                                                                     | FACE RL:<br>JM:             |                                                                                                    |                        |                                                                                                                                                                                                               |                                                |                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                         | Dril                                                      | ling and San                                             | npling    |                                                                                             |                                                                                               |                                                                                                             | Material description and profile information                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                                                                                    |                        | Fiel                                                                                                                                                                                                          | d Test                                         |                                                                                                                                          |
| METHOD                                                                                                                                                  | WATER                                                     | SAMPLES                                                  | RL<br>(m) | DEPTH<br>(m)                                                                                | GRAPHIC<br>LOG                                                                                | CLASSIFICATION<br>SYMBOL                                                                                    | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componer                                                                                                                                                                                                                                                                                                                                                   | ty/particle<br>ts           | MOISTURE<br>CONDITION                                                                              | CONSISTENCY<br>DENSITY | Test Type                                                                                                                                                                                                     | Result                                         | Structure and additional<br>observations                                                                                                 |
| NON-CORED BOREHOLE - TEST PIT NEW19P-0143A-AALOGS DRAFT.GPJ < <drawingfile>&gt; 30/11/2020 15:37 10.0.000 Daget Leb and In Situ Tool AD/T</drawingfile> | Not Encountered                                           | 0.30m<br>U50<br>0.55m                                    |           |                                                                                             |                                                                                               | СН                                                                                                          | FILL: CLAY - medium to high plasticity, brocorange-brown, with some fine to coarse grain (mostly fine grained) sand.         0.29m         FILL: Sandy CLAY - medium to high plasticity to dark grey and brown, fine to coarse grain with some fine to medium grained rounded sub-angular gravel.         1.20m         Sandy CLAY - medium to high plasticity, prifine grained sand.         1.20m         Hole Terminated at 2.00 m | ained                       | M > Wp M ~ Wp M < Wp                                                                               | H<br>St-<br>VSt        |                                                                                                                                                                                                               | >600<br>130<br>220<br>200<br>180<br>250<br>210 | FILL - CONTROLLED                                                                                                                        |
|                                                                                                                                                         | - Wat<br>(Da<br>- Wat<br>■ Wat<br><u>ata Ch</u><br>G<br>D | ter Level<br>te and time sl<br>ter Inflow<br>ter Outflow | ata       | Notes, Sa<br>U <sub>50</sub><br>CBR<br>E<br>ASS<br>B<br>Field Tes:<br>PID<br>DCP(x-y)<br>HP | 50mm<br>Bulk s<br>Envirc<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S<br>Bulk S<br>Photo<br>Dynar | Diame<br>ample to<br>nmenta<br>s jar, se<br>culfate s<br>c bag, s<br>c bag, s<br>cample<br>tonisationic pen | is<br>ter tube sample<br>or CBR testing<br>al sample<br>aled and chilled on site)<br>Soil Sample<br>air expelled, chilled)<br>on detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa)                                                                                                                                                                                                         | S S<br>F I<br>St S<br>VSt V | Ancy<br>Very Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Friable<br>V<br>L<br>ME<br>D<br>V<br>D | Vi<br>La<br>D M        | 2!5010202122232425252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525252525< | n Dense                                        | D Dry<br>M Moist<br>W Wet<br>W <sub>L</sub> Plastic Limit<br>W <sub>L</sub> Liquid Limit<br>Density Index <15%<br>Density Index 15 - 35% |



CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO:

LOGGED BY:

DATE:

1 OF 1 NEW19P-0143A

**BH206** 

BB

|                                                                                                                                                                                            |                                                                                 | type:<br>Iole dian    |           |                                         | EXCA<br>300 m                                                     |                                                                  | R WITH AUGER SURI                                                                                                     | FACE RL:<br>JM:                                    |                                                                   |                        |                                            |                                                        |                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------|-----------|-----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------|------------------------|--------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                            | Dri                                                                             | lling and San         | npling    |                                         |                                                                   |                                                                  | Material description and profile information                                                                          |                                                    |                                                                   |                        | Fiel                                       | d Test                                                 |                                                                                                                             |
| METHOD                                                                                                                                                                                     | WATER                                                                           | SAMPLES               | RL<br>(m) | DEPTH<br>(m)                            | GRAPHIC<br>LOG                                                    | CLASSIFICATION<br>SYMBOL                                         | MATERIAL DESCRIPTION: Soil type, plasticit characteristics,colour,minor componen                                      | y/particle<br>ts                                   | MOISTURE<br>CONDITION                                             | CONSISTENCY<br>DENSITY | Test Type                                  | Result                                                 | Structure and additional observations                                                                                       |
|                                                                                                                                                                                            |                                                                                 |                       |           | -                                       |                                                                   | CL                                                               | TOPSOIL: Sandy CLAY - low plasticity, gre<br>fine grained sand, root affected.                                        | y-brown,                                           | M ~ W                                                             |                        |                                            |                                                        | TOPSOIL                                                                                                                     |
| 0T LIB 1.1.G.LB Log NON-CORED BOREHOLE - TEST PIT NEW19P-0143A-AA LOGS DRAFT GPJ < <drawingfile>&gt; 30/112020 15:38 10.0.000 Daggel Lab and In Stu Tool I I IIO I ♥ I S T A</drawingfile> | Not Encountered                                                                 | 0.60m<br>U50<br>0.85m |           |                                         |                                                                   | СН                                                               | CLAY - medium to high plasticity, red-brow<br>some fine grained sand.<br>Orange-brown to red-brown.                   |                                                    | M ~ Wp                                                            | VSt<br>H               |                                            | 300<br>320<br>350<br>500<br>530                        | RESIDUAL SOL                                                                                                                |
| ₽<br>4 L                                                                                                                                                                                   | EGEND                                                                           | <br>:                 |           | Notes, Sa                               | mples a                                                           | nd Test                                                          | S                                                                                                                     | Consiste                                           | ncy                                                               |                        | U                                          | CS (kPa                                                | a) Moisture Condition                                                                                                       |
|                                                                                                                                                                                            | <u>Water</u>                                                                    |                       | hown)     | U <sub>50</sub><br>CBR<br>E<br>ASS<br>B | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S | Diamel<br>ample fi<br>nmenta<br>jar, sea<br>ulfate S<br>c bag, a | e<br>er tube sample<br>or CBR testing<br>I sample<br>aled and chilled on site)<br>oil Sample<br>ir expelled, chilled) | VS V<br>S S<br>F F<br>St S<br>VSt V<br>H H<br>Fb F | 'ery Soft<br>oft<br>irm<br>atiff<br>'ery Stiff<br>lard<br>iriable |                        | <2<br>25<br>50<br>10<br>20<br>>4           | 25<br>5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400 | D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit<br>W <sub>L</sub> Liquid Limit                                    |
| QT LIB 1.1.GLB LI                                                                                                                                                                          | Gradational or<br>transitional strata<br>Definitive or distict<br>strata change |                       |           | Field Test<br>PID<br>DCP(x-y)<br>HP     | Photoi<br>Dynan                                                   | nic pene                                                         | n detector reading (ppm)<br>trometer test (test depth interval shown)<br>meter test (UCS kPa)                         | <u>Density</u>                                     | V<br>L<br>D<br>VD                                                 | La<br>D M<br>D         | ery Lo<br>bose<br>lediun<br>ense<br>ery Do | n Dense                                                | Density Index <15%<br>Density Index 15 - 35%<br>Density Index 35 - 65%<br>Density Index 65 - 85%<br>Density Index 85 - 100% |



**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

BOREHOLE NO: PAGE:

JOB NO:

DATE:

LOGGED BY:

BH207

1 OF 1 NEW19P-0143A

BB

|        |                                                          | YPE:<br>Ole dian                                                                      |           |                                                                          | 300 m                                                             |                                                                                | OR WITH AUGER SUR DAT                                                                                                                                    | FACE RL:<br>UM:                    |                                                                                             |                        | -                          |                                                                                                             |                                                                                                                                                                  |
|--------|----------------------------------------------------------|---------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Drill                                                    | ing and Sar                                                                           | npling    |                                                                          |                                                                   |                                                                                | Material description and profile information                                                                                                             |                                    |                                                                                             |                        | Fiel                       | d Test                                                                                                      |                                                                                                                                                                  |
| METHOD | WATER                                                    | SAMPLES                                                                               | RL<br>(m) | DEPTH<br>(m)                                                             | GRAPHIC<br>LOG                                                    | CLASSIFICATION<br>SYMBOL                                                       | MATERIAL DESCRIPTION: Soil type, plastic<br>characteristics,colour,minor compone                                                                         | ity/particle<br>nts                | MOISTURE<br>CONDITION                                                                       | CONSISTENCY<br>DENSITY | Test Type                  | Result                                                                                                      | Structure and additiona observations                                                                                                                             |
|        |                                                          | 0.20m<br>U50<br>0.50m                                                                 |           | -<br>-<br>-<br>0. <u>5</u>                                               |                                                                   | CI                                                                             | FILL: CLAY - medium plasticity, brown wit<br>red-brown, with some fine to medium grai                                                                    | ned sand.                          | M ~ Wp                                                                                      |                        | HP                         | 350                                                                                                         | FILL - CONTROLLED                                                                                                                                                |
|        | Not Encountered                                          |                                                                                       |           | -<br>-<br>1. <u>0</u>                                                    |                                                                   |                                                                                |                                                                                                                                                          |                                    |                                                                                             |                        | HP                         | 400                                                                                                         |                                                                                                                                                                  |
| AD/T   | Not E                                                    |                                                                                       |           | -<br>-<br>1. <u>5</u><br>-                                               |                                                                   | СН                                                                             |                                                                                                                                                          |                                    | M > wp                                                                                      | VSt                    | HP                         | 300                                                                                                         |                                                                                                                                                                  |
|        |                                                          |                                                                                       |           | 2.0                                                                      |                                                                   |                                                                                | Orange-brown to red-brown.                                                                                                                               |                                    |                                                                                             |                        | HP<br>HP                   | 320<br>500                                                                                                  |                                                                                                                                                                  |
|        |                                                          |                                                                                       |           | -                                                                        |                                                                   |                                                                                | Hole Terminated at 2.10 m                                                                                                                                |                                    |                                                                                             |                        |                            |                                                                                                             |                                                                                                                                                                  |
| ►<br>- | e <b>r</b><br>Wat<br>(Dai<br>Wat<br>Wat<br><b>a Ch</b> a | er Level<br>te and time s<br>er Inflow<br>er Outflow<br><u>anges</u><br>radational or | ,         | Notes, Sa<br>U <sub>50</sub><br>CBR<br>E<br>ASS<br>B<br>Field Tes<br>PID | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S | i Diame<br>ample f<br>onmenta<br>s jar, se<br>Sulfate S<br>ic bag, a<br>Sample | ts<br>ter tube sample<br>for CBR testing<br>al sample<br>aled and chilled on site)<br>Soil Sample<br>air expelled, chilled)<br>on detector reading (ppm) | S S<br>F F<br>St S<br>VSt N<br>H H | I<br>Pincy<br>Very Soft<br>Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Friable<br>V<br>L | Ve                     | <2<br>25<br>50<br>10<br>20 | <b>CS (kPa</b><br>25<br>5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400<br>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | ) Moisture Condition<br>D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit<br>W <sub>L</sub> Liquid Limit<br>Density Index <15%<br>Density Index 15 - 35% |
|        | <u>a Cha</u><br>G<br>tra<br>D                            | anges                                                                                 |           | Field Test                                                               | Bulk S<br><u>s</u><br>Photo<br>Dynar                              | Sample<br>ionisationisation                                                    |                                                                                                                                                          | Fb F                               | Friable<br>V                                                                                | Lo<br>M<br>De          | ery Lo<br>bose             | oose<br>n Dense                                                                                             | Density Index 1                                                                                                                                                  |



CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO: LOGGED BY:

DATE:

NEW19P-0143A BB

16/11/20

**BH208** 

1 OF 1

|                                                                                                                                                                                    |                                                                | YPE:<br>OLE DIAN                                                                                                                          |           |                                                                                             | EXCA<br>300 m                                                                           |                                                                                                                | R WITH AUGER SURI                                                                                                                                                                                                                  | FACE RL:<br>JM:                    |                                                                                         |                        |                                                                                              |                                                  |                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                    | Dril                                                           | ling and San                                                                                                                              | npling    |                                                                                             |                                                                                         |                                                                                                                | Material description and profile information                                                                                                                                                                                       |                                    |                                                                                         |                        | Fiel                                                                                         | d Test                                           |                                                                                                                                                        |
| METHOD                                                                                                                                                                             | WATER                                                          | SAMPLES                                                                                                                                   | RL<br>(m) | DEPTH<br>(m)                                                                                | GRAPHIC<br>LOG                                                                          | CLASSIFICATION<br>SYMBOL                                                                                       | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componer                                                                                                                                                |                                    | MOISTURE<br>CONDITION                                                                   | CONSISTENCY<br>DENSITY | Test Type                                                                                    | Result                                           | Structure and additional observations                                                                                                                  |
|                                                                                                                                                                                    |                                                                |                                                                                                                                           |           | -                                                                                           |                                                                                         | CL                                                                                                             | TOPSOIL: Sandy CLAY - low plasticity, gre<br>fine grained sand, root affected.                                                                                                                                                     | ey-brown,                          | M < W                                                                                   |                        |                                                                                              |                                                  | FILL - CONTROLLED                                                                                                                                      |
| OT LB 1.1G.B. Log NON-CORED BORKHOLE - TEST PTI NEW19P-0143A-ALLOGS DRAFT GPJ < <drawngfile>&gt; 30/11/2020 15:38 10.0000 Datyal Lab and in Stu Tool P I 등 1 T IA 등 页</drawngfile> | Not Encountered                                                | 1.10m<br>U50<br>1.30m                                                                                                                     |           |                                                                                             |                                                                                         | СН                                                                                                             | CLAY - medium to high plasticity, red-brow<br>some fine grained sand.                                                                                                                                                              | n, with                            | M < Wp<br>M ~ Wp                                                                        | VSt                    |                                                                                              | 380<br>350<br>370<br>420                         | RESIDUAL SOL                                                                                                                                           |
| -0143A-AA LOG                                                                                                                                                                      |                                                                |                                                                                                                                           |           | -                                                                                           |                                                                                         |                                                                                                                | Hole Terminated at 2.10 m                                                                                                                                                                                                          |                                    |                                                                                         |                        |                                                                                              |                                                  |                                                                                                                                                        |
|                                                                                                                                                                                    | . Wat<br>(Da<br>- Wat<br>■ Wat<br>ata Ch<br>ata Ch<br>tra<br>G | ter Level<br>te and time si<br>ter Inflow<br>ter Outflow<br>anges<br>radational or<br>ansitional stra<br>efinitive or dist<br>rata change | hown)     | Notes, Sa<br>U <sub>50</sub><br>CBR<br>E<br>ASS<br>B<br>Field Test<br>PID<br>DCP(x-y)<br>HP | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plast<br>Bulk S<br>S<br>Photo<br>Dynar | Diame<br>ample f<br>nmenta<br>g jar, se<br>Gulfate S<br>c bag, a<br>c bag, a<br>c bag, a<br>conisationic pendo | <b>S</b><br>ter tube sample<br>or CBR testing<br>I sample<br>aled and chilled on site)<br>toil Sample<br>air expelled, chilled)<br>an detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa) | S S<br>F F<br>St S<br>VSt V<br>H F | ncy<br>/ery Soft<br>Soft<br>Stiff<br>/ery Stiff<br>lard<br>Friable<br>V<br>L<br>ME<br>D | Vi<br>La<br>D M        | 25<br>25<br>50<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400 | D     Dry       M     Moist       W     Wet       Wp     Plastic Limit       WL     Liquid Limit       Density Index <15%       Density Index 15 - 35% |



#### **ENGINEERING LOG - BOREHOLE**

CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD BOREHOLE NO: PAGE:

BH209

1 OF 1

NEW19P-0143A

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

**PROJECT:** MEDOWIE GARDENS - STAGE 2 JOB NO:

LOGGED BY:

DATE:

BB 16/11/20

|            | Drill                               | ing and Sam                                                                                        | pling     |                                                               |                                                                   |                                                                        | Material description and profile information                                                                           |                          |                                                                               |                        | Fiel                       | d Test                                                                     |                                                           |
|------------|-------------------------------------|----------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------|------------------------|----------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------|
| MEIHOU     | WATER                               | SAMPLES                                                                                            | RL<br>(m) | DEPTH<br>(m)                                                  | GRAPHIC<br>LOG                                                    | CLASSIFICATION<br>SYMBOL                                               | MATERIAL DESCRIPTION: Soil type, plastic<br>characteristics,colour,minor compone                                       | ity/particle<br>nts      | MOISTURE<br>CONDITION                                                         | CONSISTENCY<br>DENSITY | Test Type                  | Result                                                                     | Structure and additiona<br>observations                   |
|            |                                     | <u>0.15m</u><br>U50<br><u>0.50m</u>                                                                |           | -<br>-<br>0.5_                                                |                                                                   | CI                                                                     | FILL: Sandy CLAY - medium plasticity, br<br>brown, fine grained sand.                                                  |                          | M > Wp                                                                        | VSt                    | HP                         | 300                                                                        | FILL - CONTROLLED                                         |
| AU/I       | Not Encountered                     |                                                                                                    |           | -<br>-<br>1.0                                                 |                                                                   |                                                                        |                                                                                                                        |                          |                                                                               |                        | HP                         | 410<br>390                                                                 |                                                           |
|            |                                     |                                                                                                    |           | -<br>-<br>1. <u>5</u><br>-                                    |                                                                   | СН                                                                     |                                                                                                                        |                          | $M \sim W_P$                                                                  | VSt -<br>H             | HP                         | 380                                                                        |                                                           |
|            |                                     |                                                                                                    |           | <br>2.0                                                       |                                                                   |                                                                        | Orange-brown to red-brown.                                                                                             |                          |                                                                               |                        | HP                         | 430                                                                        |                                                           |
|            | END                                 |                                                                                                    |           | -<br>-                                                        | mplace                                                            | nd Too                                                                 | Hole Terminated at 2.10 m                                                                                              | Coppie                   |                                                                               |                        |                            | CS (PB-                                                                    | a) Mojeturo Condition                                     |
| <u>Nat</u> | Wat<br>(Dat<br>Wat<br>Wat<br>ta Cha | er Level<br>te and time sh<br>er Inflow<br>er Outflow<br>anges<br>radational or<br>ansitional stra | iown)     | Notes, Sai<br>U₅<br>CBR<br>E<br>ASS<br>B<br>Field Test<br>PID | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S | Diame<br>ample f<br>nmenta<br>jar, se<br>culfate \$<br>c bag,<br>ample | ter tube sample<br>for CBR testing<br>al sample<br>valed and chilled on site)<br>Soil Sample<br>air expelled, chilled) | S<br>F<br>St<br>VSt<br>H | very Soft<br>Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Friable<br>V<br>L | V                      | <2<br>25<br>50<br>10<br>20 | CS (kPa<br>25<br>5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400<br>posse | D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit |



CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

PROJECT: MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO: LOGGED BY: DATE: **BH210** 1 OF 1

NEW19P-0143A

BB 16/11/20

|                                                                                                                |                                            | TYPE:<br>OLE DIAM                                                                                                                                 |           |                                                                    | EXCA<br>300 m                                                                             |                                                                                           | R WITH AUGER SURI                                                                                                                                                                                                                  | FACE RL:<br>JM:                    |                                                                                                              |                        |                                                                                              |                           |                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                | Dril                                       | ling and Sam                                                                                                                                      | pling     |                                                                    |                                                                                           |                                                                                           | Material description and profile information                                                                                                                                                                                       |                                    |                                                                                                              |                        | Fiel                                                                                         | d Test                    |                                                                                                                                                        |
| METHOD                                                                                                         | WATER                                      | SAMPLES                                                                                                                                           | RL<br>(m) | DEPTH<br>(m)                                                       | GRAPHIC<br>LOG                                                                            | CLASSIFICATION<br>SYMBOL                                                                  | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componen                                                                                                                                                |                                    | MOISTURE<br>CONDITION                                                                                        | CONSISTENCY<br>DENSITY | Test Type                                                                                    | Result                    | Structure and additional observations                                                                                                                  |
| 0GS DRAFT.GFU < <drawingfile>&gt; 30/11/2020 15:38 10:0:000 Datget Lab and In Situ Tool<br/>AD/T</drawingfile> | Not Encountered                            | 0.70m<br>U50<br>0.90m                                                                                                                             |           |                                                                    |                                                                                           | CH                                                                                        | 0.05m       FILL: SAND - fine to medium grained, dark         CLAY - medium to high plasticity, red-brow         some fine grained sand.                                                                                           |                                    | M ~ W M                                                                                                      | VSt                    | HP<br>HP<br>HP                                                                               | 300<br>350<br>500<br>>600 | FILL - STOCKPILE<br>RESIDUAL SOIL                                                                                                                      |
|                                                                                                                | <br>(Da<br>Wa<br>■<br><br><br><br><br><br> | ter Level<br>te and time sh<br>ter Inflow<br>ter Outflow<br><b>anges</b><br>rradational or<br>ansitional stra<br>efinitive or dis<br>rrata change | ta        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plasti<br>Bulk S<br>S<br>Photoi<br>Dynan | Diame<br>ample f<br>nmenta<br>jar, se<br>ulfate S<br>c bag, a<br>ample<br>onisationic pen | <b>§</b><br>ter tube sample<br>or CBR testing<br>I sample<br>aled and chilled on site)<br>toil Sample<br>air expelled, chilled)<br>an detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa) | S S<br>F F<br>St S<br>VSt V<br>H F | Pincy<br>Very Soft<br>Soft<br>Firm<br>Stiff<br>Very Stiff<br>Hard<br>Friable<br>V<br>L<br>ME<br>D<br>V<br>VD | Vi<br>La<br>D<br>D     | 25<br>25<br>50<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | n Dense                   | D     Dry       M     Moist       W     Wet       Wp     Plastic Limit       WL     Liquid Limit       Density Index <15%       Density Index 15 - 35% |



CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO: LOGGED BY: DATE:

BH211 1 OF 1 NEW19P-0143A

16/11/20

BB

|                                                             |                                                   | TYPE:<br>Ole diam                                                    |           |                                                                    | EXCA<br>300 m                                                    |                                                    | R WITH AUGER SURI                                                                                                             | FACE RL:<br>JM:                    |                                                                               |                        |                            |                                                                          |                                                                                                                                                                    |
|-------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------|-----------|--------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|------------------------|----------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | Dri                                               | ling and San                                                         | npling    |                                                                    |                                                                  |                                                    | Material description and profile information                                                                                  |                                    |                                                                               |                        | Fiel                       | d Test                                                                   |                                                                                                                                                                    |
| METHOD                                                      | WATER                                             | SAMPLES                                                              | RL<br>(m) | DEPTH<br>(m)                                                       | GRAPHIC<br>LOG                                                   | CLASSIFICATION<br>SYMBOL                           | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componen                                           | y/particle<br>ts                   | MOISTURE<br>CONDITION                                                         | CONSISTENCY<br>DENSITY | Test Type                  | Result                                                                   | Structure and additional observations                                                                                                                              |
|                                                             |                                                   |                                                                      |           | -                                                                  |                                                                  | CL                                                 | TOPSOIL: Sandy CLAY - low plasticity, gre<br>fine grained sand, root affected.                                                | ey-brown,                          | M ~ W                                                                         |                        |                            |                                                                          | TOPSOIL                                                                                                                                                            |
|                                                             |                                                   |                                                                      |           | -                                                                  |                                                                  | CL                                                 | <sup>0.20m</sup> Sandy CLAY - low to medium plasticity, pa<br>fine grained sand.                                              | <br>le brown,                      |                                                                               |                        | HP                         | 230                                                                      |                                                                                                                                                                    |
|                                                             |                                                   | <u>0.60m</u><br>U50                                                  |           | 0. <u>5</u><br>-                                                   |                                                                  |                                                    | <sup>0.50m</sup> Sandy CLAY - medium plasticity, pale oran<br>and red-brown, fine grained sand.                               | <br>ige-brown                      |                                                                               |                        | HP                         | 300                                                                      | RESIDUAL SOIL                                                                                                                                                      |
| itu Tool<br>AD/T                                            | Not Encountered                                   | <u>0.80m</u>                                                         |           | -<br>-<br>1. <u>0</u><br>-                                         |                                                                  | C                                                  |                                                                                                                               |                                    | M > W <sub>P</sub>                                                            | VSt                    | HP                         | 350                                                                      |                                                                                                                                                                    |
| File>> 30/11/2020 15:38 10.0.000 Datgel Lab and In Stu Tool |                                                   |                                                                      |           | -<br>-<br>1.5_                                                     |                                                                  | CI                                                 |                                                                                                                               |                                    |                                                                               |                        | HP                         | 320<br>450                                                               |                                                                                                                                                                    |
| < <drawingfile>&gt; 30/11/2020 15:</drawingfile>            |                                                   |                                                                      |           | -                                                                  |                                                                  | — — -                                              | 1.80m<br>Sandy CLAY - medium to high plasticity, re<br>and orange-brown, fine grained sand.                                   |                                    | M ~ w <sub>P</sub>                                                            | н                      | HP                         | 500                                                                      |                                                                                                                                                                    |
| LOGS DRAFT.GPJ                                              |                                                   |                                                                      |           | 2.0                                                                |                                                                  |                                                    | 2.00m<br>Hole Terminated at 2.00 m                                                                                            |                                    |                                                                               |                        |                            |                                                                          |                                                                                                                                                                    |
| TEST PIT NEW19P-0143A-A                                     |                                                   |                                                                      |           | -                                                                  |                                                                  |                                                    |                                                                                                                               |                                    |                                                                               |                        |                            |                                                                          |                                                                                                                                                                    |
|                                                             | -<br>(Da<br>– Wa<br><b>⊲</b> Wa<br><b>rata Ch</b> |                                                                      | hown)     | Notes, Sa<br>U <sub>50</sub><br>CBR<br>E<br>ASS<br>B<br>Field Test | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plast<br>Bulk S | Diame<br>ample f<br>nmenta<br>jar, se<br>sulfate S | <u>s</u><br>er tube sample<br>or CBR testing<br>I sample<br>aled and chilled on site)<br>ioil Sample<br>ir expelled, chilled) | S S<br>F F<br>St S<br>VSt V<br>H F | I<br>/ery Soft<br>Soft<br>Firm<br>Stiff<br>/ery Stiff<br>lard<br>Friable<br>V |                        | <2<br>25<br>50<br>10<br>20 | <b>CS (kPa</b><br>25<br>5 - 50<br>0 - 100<br>00 - 200<br>00 - 400<br>400 | Moisture Condition           D         Dry           M         Moist           W         Wet           Wp.         Plastic Limit           WL         Liquid Limit |
| QT LIB 1.1.GLB                                              | tr<br>D                                           | radational or<br>ansitional stra<br>efinitive or dis<br>trata change |           | PID<br>DCP(x-y)<br>HP                                              | Photo<br>Dynar                                                   | nic pene                                           | n detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa)                                |                                    | L<br>ME<br>D<br>VD                                                            | Lo<br>D M<br>D         | oose                       | n Dense                                                                  | Density Index 15 - 35%                                                                                                                                             |



CLIENT: MCCLOY PROJECT MANAGEMENT PTY LTD

**PROJECT:** MEDOWIE GARDENS - STAGE 2

LOCATION: 688 TO 730 MEDOWIE ROAD, MEDOWIE

BOREHOLE NO: PAGE: JOB NO: LOGGED BY: DATE:

BH212 1 OF 1 NEW19P-0143A BB

|                                                                                                                                                                       |                             | YPE:<br>OLE DIAN                                                    |           |                                     | EXCA<br>300 m                                          |                                                          | R WITH AUGER SURI                                                                                                               | FACE RL:<br>JM:                    |                                                                     |                        |                                           |                                                                                      |                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------|-----------|-------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------|------------------------|-------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                       | Drill                       | ing and San                                                         | npling    |                                     |                                                        |                                                          | Material description and profile information                                                                                    |                                    |                                                                     |                        | Fiel                                      | d Test                                                                               |                                                                                                                             |
| METHOD                                                                                                                                                                | WATER                       | SAMPLES                                                             | RL<br>(m) | DEPTH<br>(m)                        | GRAPHIC<br>LOG                                         | CLASSIFICATION<br>SYMBOL                                 | MATERIAL DESCRIPTION: Soil type, plasticit<br>characteristics,colour,minor componer                                             |                                    | MOISTURE<br>CONDITION                                               | CONSISTENCY<br>DENSITY | Test Type                                 | Result                                                                               | Structure and additional observations                                                                                       |
|                                                                                                                                                                       |                             |                                                                     |           | -                                   |                                                        | CL                                                       | TOPSOIL: Sandy CLAY - low plasticity, Igre<br>fine grained sand, root affected.                                                 | ey-brown,                          |                                                                     |                        |                                           |                                                                                      | TOPSOIL                                                                                                                     |
|                                                                                                                                                                       |                             |                                                                     |           | -                                   |                                                        | <br>CI                                                   | 0.20m<br>CLAY - medium plasticity, pale brown trace<br>red-brown, with some fine grained sand.                                  |                                    | ~ Wp                                                                |                        | HP                                        | 320                                                                                  | COLLUVIUM                                                                                                                   |
|                                                                                                                                                                       |                             |                                                                     |           | 0.5                                 |                                                        |                                                          | Sandy CLAY - medium to high plasticity, re<br>and pale orange-brown, fine grained sand.                                         | <br>d-brown                        | 2                                                                   | VSt                    |                                           |                                                                                      | RESIDUAL SOIL                                                                                                               |
|                                                                                                                                                                       | tered                       | 0.90m                                                               |           | -                                   |                                                        |                                                          | 0.80m<br>CLAY - medium to high plasticity, red-brow<br>orange-brown, with some fine grained same                                |                                    |                                                                     |                        | HP                                        | 350                                                                                  |                                                                                                                             |
| Stu Tool<br>AD/T                                                                                                                                                      | Not Encountered             | U50<br>1.10m                                                        |           | 1.0                                 |                                                        |                                                          |                                                                                                                                 |                                    |                                                                     |                        | HP                                        | 500                                                                                  |                                                                                                                             |
| :38 10.0.000 Datgel Lab and In                                                                                                                                        |                             |                                                                     |           | -<br>-<br>1.5_                      |                                                        | СН                                                       |                                                                                                                                 |                                    | M < w <sub>P</sub>                                                  | н                      | HP                                        | 550                                                                                  |                                                                                                                             |
| 01 LIB LI3 LIB Log NON-CORED BOREHOLE - TEST PIT NEW19P-0143A-AA LOGS DRAFT GPJ < <drawingfile>&gt; 30/112020 15:38 10.0.000 Datgel Lab and in Stu Tool</drawingfile> |                             |                                                                     |           |                                     |                                                        |                                                          |                                                                                                                                 |                                    |                                                                     |                        | HP                                        | 580                                                                                  |                                                                                                                             |
| 3A-AA LOGS DRAFT.                                                                                                                                                     |                             |                                                                     |           | 2.0                                 |                                                        |                                                          | Hole Terminated at 2.00 m                                                                                                       |                                    |                                                                     |                        |                                           |                                                                                      |                                                                                                                             |
| TEST PIT NEW19P-014                                                                                                                                                   |                             |                                                                     |           | -                                   |                                                        |                                                          |                                                                                                                                 |                                    |                                                                     |                        |                                           |                                                                                      |                                                                                                                             |
| 9 NON-CORED BOREHOLE -                                                                                                                                                | <br>:<br>(Dat<br>Wat<br>Wat | er Level<br>e and time sl<br>er Inflow<br>er Outflow<br>anges       | nown)     | Notes, Sa<br>U₅₀<br>CBR<br>E<br>ASS | 50mm<br>Bulk s<br>Enviro<br>(Glass<br>Acid S<br>(Plast | i Diame<br>ample f<br>onmenta<br>s jar, sea<br>Sulfate S | <u>s</u><br>ter tube sample<br>or CBR testing<br>I sample<br>aled and chilled on site)<br>ioil Sample<br>air expelled, chilled) | S S<br>F F<br>St S<br>VSt V<br>H F | /ery Soft<br>Soft<br>Firm<br>Stiff<br>/ery Stiff<br>lard<br>Friable |                        | <2<br>2<br>50<br>10<br>20                 | <b>CS (kPa</b><br>25<br>5 - 50<br>5 - 100<br>00 - 200<br>00 - 200<br>00 - 400<br>400 | D Dry<br>M Moist<br>W Wet<br>W <sub>p</sub> Plastic Limit                                                                   |
| QT LIB 1.1.GLB Log                                                                                                                                                    | <br>Gi<br>tra               | radational or<br>ansitional stra<br>efinitive or dis<br>rata change | ita       | Field Test<br>PID<br>DCP(x-y)<br>HP | <u>:s</u><br>Photo<br>Dynar                            | ionisatio                                                | n detector reading (ppm)<br>etrometer test (test depth interval shown)<br>meter test (UCS kPa)                                  | <u>Density</u>                     | V<br>L<br>ME<br>D<br>VD                                             | Lo<br>M<br>D           | ery Lo<br>bose<br>lediun<br>ense<br>ery D | n Dense                                                                              | Density Index <15%<br>Density Index 15 - 35%<br>Density Index 35 - 65%<br>Density Index 65 - 85%<br>Density Index 65 - 100% |

# **APPENDIX B:**

**Results of Laboratory Testing** 



| rin                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                 | 51/1/1     |           |                                 |                                                        |                                |                                                                                                                                      |                                                                               |                                                              |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------|------------|-----------|---------------------------------|--------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|
| nt:                                                  | McC<br>PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cloy Project<br>Box 2214<br>gar NSW 2               | Manageme                        | -          | •         |                                 | N                                                      | $\wedge$                       | Accredited for complian<br>The results of the tests<br>his document are trace<br>Results provided relate<br>This report shall not be | a, calibrations and/or r<br>eable to Australian/na<br>e only to the items tes | measurements inclue<br>ational standards.<br>ted or sampled. |
| ect No<br>ect Na                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V19P-0143A<br>bosed Subdi                           |                                 | e Gardens, | Stage 2   |                                 |                                                        | RECOGNISED                     | Approved Signate<br>Senior Geotechr<br>NATA Accredited<br>Date of Issue: 30                                                          | nician)<br>I Laboratory Nur                                                   |                                                              |
| n <b>ple</b><br>ple ID:                              | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     | 0.000                           |            |           | Complin                         | a Mathadu                                              | 0 1                            | . En súa e súa                                                                                                                       | Denset                                                                        | -4                                                           |
| rial:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EW20W-392<br>andy CLAY                              | 3803                            |            |           | Date Sa                         | g Method:                                              | Sampled by                     | -                                                                                                                                    | g Departmei                                                                   | nt                                                           |
| ce:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n-Site                                              |                                 |            |           | Date Sul                        | •                                                      | 18/11/2020                     |                                                                                                                                      |                                                                               |                                                              |
| ce.<br>ificatio                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | o Specificatio                                      | n                               |            |           | 2410 041                        |                                                        |                                |                                                                                                                                      |                                                                               |                                                              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88 - 730 Med                                        |                                 | Medowie    |           |                                 |                                                        |                                |                                                                                                                                      |                                                                               |                                                              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H202 - 0.50 t                                       |                                 |            |           |                                 |                                                        |                                |                                                                                                                                      |                                                                               |                                                              |
| Teste                                                | <b>d:</b> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4/11/2020                                           |                                 |            |           |                                 |                                                        |                                |                                                                                                                                      |                                                                               |                                                              |
| ell Te                                               | st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                 | AS 12      | 89.7.1.1  | Shrink                          | Test                                                   |                                |                                                                                                                                      | ۵S                                                                            | 1289.7.                                                      |
|                                                      | aturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (%):                                                | -0                              |            | 00.7.1.1  |                                 | on drying (                                            | <b>%):</b>                     | 2.7                                                                                                                                  |                                                                               | 1200.7.                                                      |
| I on Sa                                              | acaración                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | 0                               |            |           |                                 | , a. j                                                 | -                              |                                                                                                                                      |                                                                               |                                                              |
|                                                      | ontent be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | 17                              | ′ 1        |           | Shrinka                         | ae Moistur                                             | e Content                      | (%): 19.9                                                                                                                            |                                                                               |                                                              |
| ture C                                               | ontent be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):                                           |                                 | '.1<br>? 7 |           |                                 | ge Moistur<br>rt material (                            |                                |                                                                                                                                      |                                                                               |                                                              |
| ture C<br>ture C                                     | ontent af                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):<br>ter (%):                               | 22                              | 2.7        |           | Est. ine                        | rt material                                            | (%):                           | 5%                                                                                                                                   |                                                                               |                                                              |
| ture C<br>ture C<br>Unc. C                           | ontent aft<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  |           | Est. iner<br>Crumbli            | rt material                                            | (%):<br>shrinkage              | 5%                                                                                                                                   | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C                 | ontent aff<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fore (%):<br>ter (%):                               | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  |           | Est. iner<br>Crumbli            | rt material                                            | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C                           | ontent aff<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C                 | ontent aff<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material                                            | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C                 | ontent aff<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C                 | ontent aff<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br><b>ink S</b> | ontent aff<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br><b>ink S</b> | tontent aff<br>comp. Stre<br>comp. Stre | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br><b>ink S</b> | ontent aff<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br><b>ink S</b> | tontent aff<br>comp. Stre<br>comp. Stre | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | 10.0         -         -           5.0         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | tontent aff<br>comp. Stre<br>comp. Stre | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | 10.0         -         -           5.0         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | intent aff         comp. Stress         comp. Stress         intent aff         intent aff      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | 10.0         -         -           5.0         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          | ·····                                                        |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | intent aff         comp. Stress         comp. Stress         intent aff         intent aff      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br><b>ink S</b> | intent aff         comp. Stress         comp. Stress         intent aff         intent aff      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | intent aff         comp. Stress         comp. Stress         intent aff         intent aff      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          |                                                              |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | intent aff         comp. Stress         comp. Stress         intent aff         intent aff      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | fore (%):<br>ter (%):<br>ength befor                | 22<br><b>re (kPa):</b> 37       | 2.7<br>70  | Shrinkage | Est. iner<br>Crumbli<br>Crackin | rt material<br>ing during s<br>g during st             | (%):<br>shrinkage              | 5%<br>: Nil                                                                                                                          | rate                                                                          | 50.0                                                         |
| ture C<br>ture C<br>Unc. C<br>Unc. C<br>Ms3 (%) IIa/ | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fore (%):<br>ter (%):<br>ength befor<br>ength after | 22<br>re (kPa): 37<br>(kPa): 15 | 2.7        | 20.0      | Est. ine<br>Crumbli<br>Crackin  | rt material (<br>ing during s<br>g during sh<br>Sw ell | (%):<br>shrinkage<br>irinkage: | 5%<br>Nil<br>Mode                                                                                                                    |                                                                               | 50.0                                                         |

#### Comments



|                                                                   | k Sw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ••••••                                 |                                |                   |           |                                |                                                    |                                |                                                  |                                                                                                                                   |                                        |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|-------------------|-----------|--------------------------------|----------------------------------------------------|--------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| lient:                                                            | PO E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | loy Project l<br>3ox 2214<br>gar NSW 2 | -                              | ent Pty Ltd       |           |                                | N                                                  |                                | this document are trac<br>Results provided relat | ance with ISO/IEC 170<br>ts, calibrations and/or<br>ceable to Australian/na<br>te only to the items tes<br>be reproduced except i | ational standards.<br>sted or sampled. |
| roject No<br>roject Na                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /19P-0143A<br>osed Subdi               |                                | e Gardens         | , Stage 2 |                                |                                                    | RECOGNISED<br>EDITATION        | (Senior Geotech                                  | d Laboratory Nu                                                                                                                   |                                        |
|                                                                   | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                |                   |           |                                |                                                    |                                |                                                  |                                                                                                                                   |                                        |
| mple ID:                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EW20W-3923                             | 3S04                           |                   |           | -                              | g Method:                                          | -                              |                                                  | ng Departme                                                                                                                       | nt                                     |
| aterial:                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | andy CLAY                              |                                |                   |           | Date Sa                        | -                                                  | 16/11/2020                     |                                                  |                                                                                                                                   |                                        |
| ource:                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n-Site                                 |                                |                   |           | Date Sul                       | bmitted:                                           | 18/11/2020                     | )                                                |                                                                                                                                   |                                        |
| ecificatio                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o Specificatio<br>38 - 730 Mede        |                                | Modowia           |           |                                |                                                    |                                |                                                  |                                                                                                                                   |                                        |
| •                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4203 - 0.05 ti                         | -                              | wedowie           |           |                                |                                                    |                                |                                                  |                                                                                                                                   |                                        |
| te Teste                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/11/2020                              | 0.2011                         |                   |           |                                |                                                    |                                |                                                  |                                                                                                                                   |                                        |
|                                                                   | ontent be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                                | 7.7               |           | 11                             | ge Moistur                                         |                                |                                                  |                                                                                                                                   |                                        |
| bisture C<br>bisture C<br>t. Unc. C<br>t. Unc. C                  | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 21<br><b>e (kPa):</b> >6       | 1.6               | Shrinkaq  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| oisture C<br>oisture C<br>st. Unc. C                              | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during                          | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture C<br>bisture C<br>bit. Unc. C<br>bit. Unc. C              | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               | · · · · · · · · · · · · · · · · · · ·  |
| bisture C<br>bisture C<br>bit. Unc. C<br>bit. Unc. C<br>hrink S   | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               | · · · · · · · · · · · · · · · · · · ·  |
| bisture C<br>bisture C<br>bit. Unc. C<br>bit. Unc. C<br>hrink S   | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               | · · · · · · · · · · · · · · · · · · ·  |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture C<br>bisture C<br>bit. Unc. C<br>bit. Unc. C<br>hrink S   | ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. comp.<br>comp. comp.<br>comp.<br>comp. comp.<br>comp.<br>comp. comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.                    | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. comp.<br>comp. comp.<br>comp.<br>comp. comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp. | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | Shrinkag  | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | intent aft         comp. Stree         comp. Stree         intent aft         intent aft <tr< td=""><td>er (%):<br/>ength befor<br/>ength after</td><td>21<br/>e (kPa): &gt;6<br/>(kPa): &gt;6</td><td></td><td></td><td>Est. ine<br/>Crumbli<br/>Crackin</td><td>rt material<br/>ing during<br/>g during sl<br/>Sw ell</td><td>(%):<br/>shrinkage<br/>hrinkage:</td><td>≥: Nil<br/>Minin</td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | er (%):<br>ength befor<br>ength after  | 21<br>e (kPa): >6<br>(kPa): >6 |                   |           | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl<br>Sw ell | (%):<br>shrinkage<br>hrinkage: | ≥: Nil<br>Minin                                  |                                                                                                                                   |                                        |
| bisture Co<br>bisture Co<br>bit. Unc. C<br>bit. Unc. C<br>hrink S | ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. comp.<br>comp. comp.<br>comp.<br>comp. comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp.<br>comp. | er (%):<br>ength befor                 | 21<br><b>e (kPa):</b> >6       | 1.6<br>600<br>600 | 20.0      | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl<br>Sw ell | (%):<br>shrinkage              | 3%<br>e: Nil                                     | num                                                                                                                               | 50.0                                   |

#### Comments



| hrin                                             |                                                                                                 |                                      |                                 |            |           |                                  |                                                   |                                |                                                  |                                                                                                                                   |                                        |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|------------|-----------|----------------------------------|---------------------------------------------------|--------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| lient:                                           | PO E                                                                                            | loy Project<br>Box 2214<br>gar NSW 2 | Manageme<br>2309                | nt Pty Ltd |           |                                  | N                                                 |                                | this document are trac<br>Results provided relat | ance with ISO/IEC 170<br>s, calibrations and/or i<br>ceable to Australian/nz<br>te only to the items tes<br>e reproduced except i | ational standards.<br>sted or sampled. |
| roject No<br>roject Na                           |                                                                                                 | /19P-0143/<br>osed Subd              | A<br>ivision - The              | e Gardens  | , Stage 2 |                                  |                                                   | RECOGNISED<br>EDITATION        | (Senior Geotech                                  | d Laboratory Nur                                                                                                                  |                                        |
|                                                  | Details                                                                                         |                                      |                                 |            |           |                                  |                                                   |                                |                                                  |                                                                                                                                   |                                        |
| ample ID:                                        | : N                                                                                             | EW20W-392                            | 3S05                            |            |           |                                  | g Method:                                         | Sampled b                      | y Engineerin                                     | ig Departme                                                                                                                       | nt                                     |
| aterial:                                         | Sa                                                                                              | andy CLAY                            |                                 |            |           | Date Sar                         | -                                                 | 16/11/2020                     | )                                                |                                                                                                                                   |                                        |
| ource:                                           |                                                                                                 | n-Site                               |                                 |            |           | Date Sul                         | bmitted:                                          | 18/11/2020                     | )                                                |                                                                                                                                   |                                        |
| -                                                | cation: 68<br>cation: BI                                                                        |                                      | lowie Road, I                   | Vedowie    |           |                                  |                                                   |                                |                                                  |                                                                                                                                   |                                        |
| oisture C<br>oisture C                           | content be                                                                                      |                                      |                                 | ).8<br>5.5 |           | Shrinka<br>Est. ine              | -                                                 |                                | 5%                                               |                                                                                                                                   |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C            | Content aft<br>Comp. Stre<br>Comp. Stre                                                         | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 |           | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             |                                        |
| oisture C<br>st. Unc. C                          | Content aft<br>Comp. Stre<br>Comp. Stre                                                         | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during                         | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C            | Content aft<br>Comp. Stre<br>Comp. Stre                                                         | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre                                                         | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre                                                         | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             | · · · · · · · · · · · · · · · · · · ·  |
| oisture C<br>st. Unc. C<br>st. Unc. C            | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·  |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·  |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell                                                | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     |                                                                                                                                   |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell<br>10.0                                        | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | Shrinkag  | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s           | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             |                                        |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Comp. Stre<br>Swell<br>10.0<br>-5.0<br>-5.0<br>-10.0 | er (%):<br>ngth befor<br>ngth after  | 25<br>re (kPa): >6<br>(kPa): 46 | 5.5        |           | e Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s<br>Sw ell | (%):<br>shrinkage<br>nrinkage: | 5%<br>Nil<br>Mode                                |                                                                                                                                   | 50.0                                   |
| oisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell<br>10.0                                        | er (%):<br>ngth befor                | 25<br>re (kPa): >6              | 5.5<br>600 | 20.0      | Est. iner<br>Crumbli<br>Crackin  | rt material<br>ing during<br>g during s<br>Sw ell | (%):<br>shrinkage              | 5%<br>e: Nil                                     | erate                                                                                                                             | 50.0                                   |

#### Comments



| Shrin                                                            |                                                                                                            |                                                       |                                      |                 |           |                                |                                                   |                                |                                                                                                                                      |                                                                               |                                                                |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------|-----------------|-----------|--------------------------------|---------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|
| Client:                                                          | PO I                                                                                                       | loy Project I<br>3ox 2214<br>gar NSW 2                | C C                                  | nt Pty Ltd      |           |                                | Ň                                                 |                                | Accredited for complia<br>The results of the tests<br>this document are trace<br>Results provided relate<br>This report shall not be | s, calibrations and/or r<br>eable to Australian/na<br>e only to the items tes | measurements included<br>ational standards.<br>ted or sampled. |
| Project No<br>Project Na                                         |                                                                                                            | /19P-0143A<br>losed Subdi                             | -                                    | e Gardens,      | , Stage 2 |                                |                                                   | RECOGNISED                     | Approved Signat<br>(Senior Geotechi<br>NATA Accredited<br>Date of Issue: 30                                                          | nician)<br>d Laboratory Nur                                                   |                                                                |
| ample                                                            |                                                                                                            |                                                       |                                      |                 |           |                                |                                                   |                                |                                                                                                                                      |                                                                               |                                                                |
| ample ID:                                                        |                                                                                                            | EW20W-3923                                            | 3S07                                 |                 |           |                                |                                                   |                                | y Engineerin                                                                                                                         | g Departmei                                                                   | nt                                                             |
| aterial:                                                         |                                                                                                            | andy CLAY                                             |                                      |                 |           | Date Sa                        | -                                                 | 16/11/2020                     |                                                                                                                                      |                                                                               |                                                                |
| ource:                                                           | -                                                                                                          | n-Site                                                |                                      |                 |           | Date Su                        | bmitted:                                          | 18/11/2020                     | )                                                                                                                                    |                                                                               |                                                                |
| pecificatio                                                      |                                                                                                            | o Specificatio<br>38 - 730 Medo                       |                                      | Andowio         |           |                                |                                                   |                                |                                                                                                                                      |                                                                               |                                                                |
| •                                                                |                                                                                                            | H205 - 0.30 ted                                       | -                                    | viedowie        |           |                                |                                                   |                                |                                                                                                                                      |                                                                               |                                                                |
| ate Teste                                                        | -                                                                                                          | 4/11/2020                                             | 0.0011                               |                 |           |                                |                                                   |                                |                                                                                                                                      |                                                                               |                                                                |
| well Te                                                          | st                                                                                                         |                                                       |                                      | AS 12           | 89.7.1.1  | Shrinl                         | k Test                                            |                                |                                                                                                                                      | AS                                                                            | 1289.7.1                                                       |
|                                                                  | aturation                                                                                                  | (%):                                                  | -0                                   |                 | ••••••    |                                | on drying (                                       | (%):                           | 3.9                                                                                                                                  |                                                                               |                                                                |
| well off 3d                                                      | aturation                                                                                                  | ( /0).                                                |                                      |                 |           |                                |                                                   |                                |                                                                                                                                      |                                                                               |                                                                |
| loisture C                                                       |                                                                                                            |                                                       |                                      | 2.8             |           | Shrinka                        | ge Moistu                                         | re Content                     | <b>t (%):</b> 20.8                                                                                                                   |                                                                               |                                                                |
| loisture C<br>loisture C                                         | ontent be<br>ontent aft                                                                                    | fore (%):<br>er (%):                                  | 22<br>24                             | .5              |           | Est. ine                       | rt material                                       | (%):                           | 3%                                                                                                                                   |                                                                               |                                                                |
| loisture Co<br>loisture Co<br>st. Unc. C                         | ontent be<br>ontent aft<br>omp. Stre                                                                       | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       |           | Est. ine<br>Crumbli            | rt material<br>ing during                         | (%):<br>shrinkage              | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| loisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C             | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):                                  | 22<br>24<br>e (kPa): 25              | 4.5<br>50       |           | Est. ine<br>Crumbli            | rt material                                       | (%):<br>shrinkage              | 3%                                                                                                                                   |                                                                               |                                                                |
| loisture Co<br>loisture Co<br>st. Unc. C                         | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Christian | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| loisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C             | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during                         | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| loisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C             | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| loisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C             | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               | · · · · · · · · · · · · · · · · · · ·                          |
| oisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S   | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               | ·····                                                          |
| oisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S   | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                         |                                                                |
| oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S  | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| oisture Co<br>loisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                         |                                                                |
| oisture Co<br>loisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre                                                          | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| oisture Co<br>loisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>wwell                                                 | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             | ·····                                                                         |                                                                |
| oisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S   | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| oisture Co<br>loisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>wwell                                                 | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                         |                                                                |
| loisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C             | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                                         |                                                                |
| oisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S   | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | Shrinkage | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s           | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             |                                                                               |                                                                |
| oisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S   | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well<br>10.0 - · · · ·<br>5.0 - · · ·<br>-5.0 - · · · | fore (%):<br>er (%):<br>ength before<br>ength after ( | 22<br>24<br>e (kPa): 25<br>(kPa): 18 | 4.5<br>50<br>50 |           | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s<br>Sw ell | (%):<br>shrinkage<br>hrinkage: | 3%<br>2: Nil<br>Nil                                                                                                                  | 45.0                                                                          | 50.0                                                           |
| oisture C<br>loisture C<br>st. Unc. C<br>st. Unc. C<br>hrink S   | ontent be<br>ontent aff<br>omp. Stre<br>omp. Stre<br>well                                                  | fore (%):<br>er (%):<br>ength befor                   | 22<br>24<br>e (kPa): 25              | 4.5<br>50       | 20.0      | Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during s<br>Sw ell | (%):<br>shrinkage<br>hrinkage: | 3%<br>3%                                                                                                                             | 45.0                                                                          | 50.0                                                           |

#### Comments



Depart No. COUNEW/2022 CO.

I

| ent:                                                      | PO B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | by Project M<br>ox 2214<br>ar NSW 23   | -                              | nt Pty Ltd    |           |                                            | NA                                                                         |                                      | ccredited for complian<br>ne results of the tests,<br>is document are trace<br>esults provided relate<br>nis report shall not be | , calibrations and/or i<br>eable to Australian/na<br>only to the items tes | measurements inclu<br>ational standards.<br>sted or sampled. |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|---------------|-----------|--------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|
| oject No<br>oject Na                                      | me: NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I9P-0143A<br>sed Subdiv                | rision - The                   | e Gardens,    | Stage 2   |                                            |                                                                            | ECOGNISED (S                         | pproved Signato<br>Senior Geotechn<br>ATA Accredited<br>ate of Issue: 30                                                         | ician)<br>Laboratory Nur                                                   |                                                              |
| nple ID:<br>erial:<br>urce:<br>cificatio<br>ject Loc      | CL<br>On<br>on: No<br>cation: 688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -Site<br>Specificatior<br>8 - 730 Medo | n<br>wie Road, N               | Лedowie       |           | Samplin<br>Date Sar<br>Date Sul            | -                                                                          | Sampled by<br>6/11/2020<br>8/11/2020 | Engineering                                                                                                                      | g Departme                                                                 | nt                                                           |
| e Teste                                                   | <b>cation:</b> BH<br><b>d:</b> 24/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 206 - 0.60 to<br>11/2020               | 0.85m                          |               | 89.7.1.1  |                                            |                                                                            |                                      |                                                                                                                                  |                                                                            | 1289.7.                                                      |
| ell Te                                                    | e <b>st</b><br>aturation (§                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | %):                                    | -0.                            | .7            |           | Shrink o                                   | on drying (%                                                               | o):                                  | 3.3                                                                                                                              |                                                                            |                                                              |
| ell on Sa<br>sture C<br>sture C<br>Unc. C<br>Unc. C       | aturation (Sontent before<br>ontent afte<br>comp. Stren<br>comp. Stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore (%):<br>r (%):<br>igth before      | 30<br>32<br><b>e (kPa):</b> 29 | .0<br>.8<br>0 |           | Shrinka<br>Est. inei<br>Crumbli            | on drying (%<br>ge Moisture<br>rt material (<br>ng during s<br>g during sh | Content<br>%):<br>hrinkage           | <b>(%):</b> 29.9<br><1%                                                                                                          | rate                                                                       |                                                              |
| ell on Sa<br>sture C<br>sture C<br>Unc. C                 | aturation (Sontent before<br>ontent afte<br>comp. Stren<br>comp. Stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore (%):<br>r (%):<br>igth before      | 30<br>32<br><b>e (kPa):</b> 29 | .0<br>.8<br>0 | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moisture<br>rt material (<br>ng during s                                | Content<br>%):<br>hrinkage           | (%): 29.9<br><1%<br>: Nil                                                                                                        | rate                                                                       |                                                              |
| ell on Sa<br>sture C<br>Unc. C<br>Unc. C<br><b>Unc. C</b> | aturation (Sontent before<br>ontent afte<br>comp. Stren<br>comp. Stren                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore (%):<br>r (%):<br>igth before      | 30<br>32<br><b>e (kPa):</b> 29 | .0<br>.8<br>0 | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moisture<br>rt material (<br>ng during s<br>g during sh                 | Content<br>%):<br>hrinkage           | (%): 29.9<br><1%<br>: Nil                                                                                                        | rate                                                                       | · · · · · · · · · · · · · · · · · · ·                        |
| ell on Sa<br>sture C<br>Unc. C<br>Unc. C<br><b>Unc. C</b> | aturation (9<br>ontent befo<br>ontent afte<br>comp. Stree<br>comp. Stree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ore (%):<br>r (%):<br>igth before      | 30<br>32<br><b>e (kPa):</b> 29 | .0<br>.8<br>0 | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moisture<br>rt material (<br>ng during s<br>g during sh                 | Content<br>%):<br>hrinkage           | (%): 29.9<br><1%<br>: Nil                                                                                                        | rate                                                                       |                                                              |
| ell on Sa<br>sture C<br>sture C<br>Unc. C<br>Unc. C       | aturation (9<br>ontent before<br>ontent after<br>comp. Street<br>comp. Street<br>comp | ore (%):<br>r (%):<br>igth before      | 30<br>32<br><b>e (kPa):</b> 29 | .0<br>.8<br>0 | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moisture<br>rt material (<br>ng during s<br>g during sh                 | Content<br>%):<br>hrinkage           | (%): 29.9<br><1%<br>: Nil                                                                                                        | rate                                                                       |                                                              |

#### Comments



| Client:                                                                       | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loy Project l<br>3ox 2214<br>gar NSW 2                        | -                              | ent Pty Ltd             |           |                                           | N                                                      | $\wedge$                       |                                                                             | eable to Australian/na<br>e only to the items tes | measurements include<br>ational standards.<br>sted or sampled. |
|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------|-------------------------|-----------|-------------------------------------------|--------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|
| Project No<br>Project Na                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V19P-0143A<br>oosed Subdi                                     |                                | e Gardens               | , Stage 2 |                                           |                                                        | RECOGNISED<br>EDITATION        | Approved Signat<br>(Senior Geotechi<br>NATA Accredited<br>Date of Issue: 30 | nician)<br>d Laboratory Nur                       |                                                                |
| ample I                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | 0.000                          |                         |           | Complin                                   | a Mathadu                                              | O da al ha                     | <b>F</b> a sin s sin                                                        | - Denseter                                        |                                                                |
| ample ID:<br>aterial:                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EW20W-3923<br>LAY                                             | 3809                           |                         |           | Date Sa                                   | g Method:                                              |                                |                                                                             | g Departme                                        | nt                                                             |
| ource:                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n-Site                                                        |                                |                         |           | Date Sal                                  | •                                                      | 16/11/2020<br>18/11/2020       |                                                                             |                                                   |                                                                |
| -                                                                             | ation: 6<br>ation: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o Specificatio<br>88 - 730 Med<br>H207 - 0.20 te<br>4/11/2020 | owie Road, I                   | Medowie                 |           |                                           |                                                        |                                |                                                                             |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co                                        | ituration<br>ontent be<br>ontent af                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | fore (%):<br>er (%):                                          | 18<br>24                       | 1.8<br>3.9<br>4.1<br>50 |           | Shrinka<br>Est. ine                       | on drying (<br>ge Moistur<br>rt material<br>ing during | e Conten<br>(%):               | <1%                                                                         |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C            | ituration<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fore (%):                                                     | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1              |           | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | <b>t (%):</b> 15.8<br><1%                                                   |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C            | ituration<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during                | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | aturation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | aturation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   | · · · · · · · · · · · · · · · · · · ·                          |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | aturation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   | · · · · · · · · · · · · · · · · · · ·                          |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | turation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   | · · · · · · · · · · · · · · · · · · ·                          |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | aturation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   | · · · · · · · · · · · · · · · · · · ·                          |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | turation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkage | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   | · · · · · · · · · · · · · · · · · · ·                          |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | turation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | turation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   |                                                                |
| well on Sa<br>oisture Co<br>oisture Co<br>st. Unc. C<br>st. Unc. C<br>hrink S | 10.0 Content be<br>ontent afformer structure<br>omp. Structure<br>well<br>10.0 Content of the<br>5.0 Content of the<br>0.0 Content of the<br>content of the<br>structure<br>structure<br>content of the<br>structure<br>structure<br>content of the<br>structure<br>structure<br>content of the<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>structure<br>struct | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkago | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 |                                                   |                                                                |
| st. Unc. C<br>hrink S<br><sup>MSI</sup> (%) IIa/                              | turation<br>ontent be<br>ontent aff<br>omp. Stro<br>omp. Stro<br>well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | fore (%):<br>er (%):<br>ength befor                           | 18<br>24<br><b>e (kPa):</b> 35 | 3.9<br>4.1<br>50        | Shrinkage | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during sl | e Content<br>(%):<br>shrinkage | t (%): 15.8<br><1%<br>: Nil                                                 | 45.0                                              | 50.0                                                           |

#### Comments



|                                                          | k Sw                                               |                                       |                                 |            | -         |                                           |                                                    |                                |                                                                             |                                                                                                                                   |                                                             |
|----------------------------------------------------------|----------------------------------------------------|---------------------------------------|---------------------------------|------------|-----------|-------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| nt:                                                      | McC<br>PO E                                        |                                       | Manageme                        | -          |           |                                           | N                                                  | $\boldsymbol{\wedge}$          | The results of the test<br>this document are trac<br>Results provided relat | ance with ISO/IEC 17(<br>ts, calibrations and/or<br>ceable to Australian/na<br>te only to the items tes<br>be reproduced except i | measurements inclu<br>ational standards.<br>ted or sampled. |
| ject No<br>ject Na                                       |                                                    | /19P-0143/<br>osed Subd               | A<br>ivision - The              | e Gardens  | , Stage 2 |                                           |                                                    | RECOGNISED<br>EDITATION        | (Senior Geotech                                                             | d Laboratory Nu                                                                                                                   |                                                             |
|                                                          | Details                                            |                                       |                                 |            |           |                                           |                                                    |                                |                                                                             |                                                                                                                                   |                                                             |
| ple ID:                                                  |                                                    | EW20W-392                             | 3S10                            |            |           |                                           | g Method:                                          |                                |                                                                             | ng Departme                                                                                                                       | nt                                                          |
| erial:                                                   | -                                                  | LAY                                   |                                 |            |           | Date Sa                                   | •                                                  | 16/11/2020                     |                                                                             |                                                                                                                                   |                                                             |
| rce:                                                     |                                                    | n-Site                                |                                 |            |           | Date Sul                                  | bmitted:                                           | 18/11/2020                     | )                                                                           |                                                                                                                                   |                                                             |
| cificati                                                 |                                                    | o Specificatio                        |                                 | Ma davida  |           |                                           |                                                    |                                |                                                                             |                                                                                                                                   |                                                             |
|                                                          |                                                    | 88 - 730 Mec<br>H208 - 1.10           | lowie Road, l<br>to 1 30m       | Viedowie   |           |                                           |                                                    |                                |                                                                             |                                                                                                                                   |                                                             |
| Teste                                                    |                                                    | 1/11/2020                             | 0 1.3011                        |            |           |                                           |                                                    |                                |                                                                             |                                                                                                                                   |                                                             |
|                                                          |                                                    |                                       |                                 | A C 40     | 00 7 4 4  | Charles                                   |                                                    |                                |                                                                             |                                                                                                                                   | 4000 7                                                      |
| ell Te                                                   | aturation                                          | (0/_).                                | -0                              |            | 89.7.1.1  |                                           |                                                    | 2/ )•                          | 2.4                                                                         | Að                                                                                                                                | 1289.7.                                                     |
| n on S                                                   | aturation                                          | (%):                                  | -0                              | ./         |           | II Shrink d                               | on drying ('                                       | 70):                           | 3.4                                                                         |                                                                                                                                   |                                                             |
|                                                          | ontant ha                                          | for (0/)                              | 20                              | 0          |           |                                           | ao Moiotur                                         | a Cantan                       | + /0/ \                                                                     |                                                                                                                                   |                                                             |
| ture C                                                   | Content be                                         |                                       |                                 | ).9<br>L 7 |           | Shrinka                                   | ge Moistur<br>rt matorial                          |                                |                                                                             |                                                                                                                                   |                                                             |
| sture C<br>sture C                                       | content aft                                        | er (%):                               | 31                              | 1.7        |           | Shrinka<br>Est. ine                       | rt material                                        | (%):                           | <1%                                                                         |                                                                                                                                   |                                                             |
| sture C<br>sture C<br>Unc. C                             | Content aft<br>Comp. Stre                          | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  |           | Shrinka<br>Est. ine<br>Crumbli            | rt material<br>ing during                          | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):                               | 31<br>re (kPa): 42              | 1.7<br>20  |           | Shrinka<br>Est. ine<br>Crumbli            | rt material                                        | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| sture C<br>sture C<br>Unc. C                             | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkaq  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkage | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during                          | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkagı | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkagı | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                       |
| ture C<br>unc. C<br>Unc. C<br>Unc. C<br>ink S            | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ture C<br>unc. C<br>Unc. C<br>Unc. C<br>ink S            | Content aft<br>Comp. Stre<br>Comp. Stre            | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ture C<br>unc. C<br>Unc. C<br>Unc. C<br>ink S            | Soment aft<br>Comp. Stre<br>Comp. Stre<br>Swell    | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkagı | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ture C<br>Unc. C<br>Unc. C<br>Unc. C<br>S<br>NS3 (%) IIe | Soment aft<br>Comp. Stre<br>Comp. Stre<br>Swell    | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkage | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ture C<br>Unc. C<br>Unc. C<br>Unc. C<br>S<br>NS3 (%) IIe | Soment aft<br>Comp. Stre<br>Comp. Stre<br>Swell    | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ture C<br>Unc. C<br>Unc. C<br>Unc. C<br>S<br>NS3 (%) IIe | Swell                                              | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkag  | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ature C<br>ature C<br>Unc. C<br>Unc. C                   | Swell                                              | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkagı | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             |                                                             |
| ture C<br>Unc. C<br>Unc. C<br>Unc. C<br>S<br>NS3 (%) IIe | Swell                                              | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | Shrinkagı | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl           | (%):<br>shrinkage              | <1%<br>e: Nil                                                               |                                                                                                                                   |                                                             |
| ture C<br>Unc. C<br>Unc. C<br>Unc. C<br>S<br>NS3 (%) IIe | Content aft<br>Comp. Stree<br>Comp. Stree<br>Swell | er (%):<br>ength befor<br>ength after | 31<br>re (kPa): 42<br>(kPa): 50 |            |           | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl<br>Sw ell | (%):<br>shrinkage<br>nrinkage: | <1%<br>P: Nil<br>Mode                                                       |                                                                                                                                   | 50.0                                                        |
| ture C<br>Unc. C<br>Unc. C<br>Unc. C<br>S<br>NS3 (%) IIe | Content aft<br>Comp. Stre<br>Comp. Stre<br>Swell   | er (%):<br>ength befo                 | 31<br>re (kPa): 42              | 1.7<br>20  | 20.0      | Shrinka<br>Est. ine<br>Crumbli<br>Crackin | rt material<br>ing during<br>g during sl<br>Sw ell | (%):<br>shrinkage              | <1%<br>e: Nil                                                               | erate                                                                                                                             | 50.0                                                        |

## Comments



| hrink                                                                                                                                               |                                                                                        |                                    |                                 |                  |           |                                            |                                                                                     |                                |                                                                                                                                    |                                                                               |                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------|---------------------------------|------------------|-----------|--------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------|
| lient:                                                                                                                                              | PO B                                                                                   | oy Project<br>ox 2214<br>Jar NSW 2 | Manageme<br>2309                | ent Pty Ltd      |           |                                            | N                                                                                   |                                | Accredited for complia<br>The results of the tests<br>his document are trac<br>Results provided relats<br>This report shall not be | s, calibrations and/or<br>ceable to Australian/n<br>te only to the items test | measurements includ<br>ational standards.<br>sted or sampled. |
| roject No.<br>roject Nar                                                                                                                            |                                                                                        | 19P-0143A<br>osed Subdi            | A<br>ivision - The              | e Gardens        | , Stage 2 |                                            |                                                                                     | RECOGNISED (                   | Approved Signat<br>Senior Geotech<br>NATA Accredited<br>Date of Issue: 30                                                          | nician)<br>d Laboratory Nu                                                    |                                                               |
| ample [                                                                                                                                             | Details                                                                                |                                    |                                 |                  |           |                                            |                                                                                     |                                |                                                                                                                                    |                                                                               |                                                               |
| mple ID:                                                                                                                                            |                                                                                        | W20W-392                           | 3S11                            |                  |           | Samplin                                    | g Method:                                                                           | Sampled by                     | y Engineerin                                                                                                                       | ig Departme                                                                   | nt                                                            |
| aterial:                                                                                                                                            | Sa                                                                                     | ndy CLAY                           |                                 |                  |           | Date Sar                                   | npled:                                                                              | 16/11/2020                     |                                                                                                                                    |                                                                               |                                                               |
| urce:                                                                                                                                               | Or                                                                                     | n-Site                             |                                 |                  |           | Date Sul                                   | omitted:                                                                            | 18/11/2020                     |                                                                                                                                    |                                                                               |                                                               |
| ecificatio                                                                                                                                          | n: No                                                                                  | Specificatio                       | on                              |                  |           |                                            |                                                                                     |                                |                                                                                                                                    |                                                                               |                                                               |
| -                                                                                                                                                   |                                                                                        |                                    | owie Road, I                    | Medowie          |           |                                            |                                                                                     |                                |                                                                                                                                    |                                                                               |                                                               |
| -                                                                                                                                                   |                                                                                        | 1209 - 0.15 t                      | o 0.50m                         |                  |           |                                            |                                                                                     |                                |                                                                                                                                    |                                                                               |                                                               |
| te Tested                                                                                                                                           | : 24                                                                                   | /11/2020                           |                                 |                  |           |                                            |                                                                                     |                                |                                                                                                                                    |                                                                               |                                                               |
| vell on Sa<br>bisture Co<br>bisture Co<br>t. Unc. Co                                                                                                | turation (<br>ontent bef<br>ontent afte<br>omp. Stre                                   | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 |                  |           | Shrinka<br>Est. inei<br>Crumbli            | on drying ( <sup>6</sup><br>ge Moistur<br>rt material<br>ng during s<br>g during sł | e Content<br>(%):<br>shrinkage | <1%                                                                                                                                | r                                                                             |                                                               |
|                                                                                                                                                     | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre                      | ore (%):<br>er (%):                | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 |           | Shrinka<br>Est. inei<br>Crumbli            | ge Moistur<br>rt material                                                           | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             |                                                               |
| vell on Sa<br>bisture Co<br>bisture Co<br>t. Unc. Co<br>t. Unc. Co                                                                                  | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre                      | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s                                            | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             |                                                               |
| vell on Sa<br>visture Co<br>visture Co<br>t. Unc. Co<br>t. Unc. Co                                                                                  | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre                      | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         |                                                               |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co                                                                                     | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well              | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         |                                                               |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br><b>trink S</b>                                                                   | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well              | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br><b>arink S</b>                                                                   | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well              | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co                                                                                     | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well              | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             |                                                               |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br><b>t. Unc. Co</b><br>MSI (%)                                                     | turation (<br>ontent bef<br>ontent after<br>omp. Stre<br>omp. Stre<br>well             | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             |                                                               |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br><b>t. Unc. Co</b><br><b>mink S</b>                                               | turation (<br>ontent bef<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well              | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br>t. Unc. Co<br>mrink S                                                            | turation (<br>ontent bef<br>ontent after<br>omp. Stre<br>omp. Stre<br>well             | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br>t. Unc. Co<br>mrink S                                                            | turation (<br>ontent bef<br>ontent after<br>omp. Stre<br>omp. Stre<br>well             | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br>t. Unc. Co<br>mrink S                                                            | turation (<br>ontent bef<br>ontent after<br>omp. Stre<br>omp. Stre<br>well             | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br><b>t. Unc. Co</b><br>MSI (%)                                                     | turation (<br>ontent bef<br>ontent after<br>omp. Stre<br>omp. Stre<br>well             | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co<br>t. Unc. Co<br>t. Unc. Co<br>t. Unc. Co<br>mrink So                                             | turation (<br>ontent bef<br>ontent after<br>omp. Stre<br>omp. Stre<br>well             | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r                                                                             | · · · · · · · · · · · · · · · · · · ·                         |
| ell on Sa<br>isture Co<br>isture Co<br>t. Unc. Co | turation (<br>pontent bef<br>pontent after<br>pomp. Stre<br>pomp. Stre<br>well<br>10.0 | ore (%):<br>er (%):<br>ngth befor  | 19<br>25<br><b>re (kPa):</b> 30 | 9.3<br>5.1<br>00 | Shrinkag  | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ng during s<br>g during sl                             | e Content<br>(%):<br>shrinkage | : <b>(%):</b> 17.2<br><1%<br><b>::</b> Nil                                                                                         | r<br>                                                                         | 50.0                                                          |

## Comments



| ent:                                                                       | PO E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | loy Project l<br>3ox 2214<br>gar NSW 2                        | -                       | ent Pty Ltd      |              |                                 |                                              | $\wedge$         | Accredited for complia<br>The results of the tests<br>his document are trac<br>Results provided relate<br>This report shall not be | eable to Australian/na<br>only to the items test | measurements inclu<br>ational standards.<br>sted or sampled. |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------|------------------|--------------|---------------------------------|----------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|
| oject No<br>oject Na                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /19P-0143A<br>osed Subdi                                      |                         | e Gardens        | , Stage 2    |                                 | WORLD                                        | RECOGNISED       | Approved Signat<br>(Senior Geotechr<br>NATA Accredited<br>Date of Issue: 30                                                        | nician)<br>I Laboratory Nui                      |                                                              |
| mple  <br>nple  D:                                                         | Details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EW20W-3923                                                    | 3S13                    |                  |              | Samplin                         | g Method:                                    | Sampled by       | v Engineerin                                                                                                                       | g Departme                                       | nt                                                           |
| erial:                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | andy CLAY                                                     |                         |                  |              | Date Sai                        |                                              | 16/11/2020       | -                                                                                                                                  | 5 1                                              |                                                              |
| irce:                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n-Site                                                        |                         |                  |              | Date Sul                        | bmitted:                                     | 18/11/2020       |                                                                                                                                    |                                                  |                                                              |
| •                                                                          | cation: 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o Specificatio<br>38 - 730 Med<br>H211 - 0.60 to<br>I/11/2020 | owie Road, I            | Medowie          |              |                                 |                                              |                  |                                                                                                                                    |                                                  |                                                              |
| ell Te                                                                     | st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                               |                         | AS 12            | 89.7.1.1     | Shrink                          | < Test                                       |                  |                                                                                                                                    | AS                                               | 1289.7                                                       |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (%)·                                                          | -0                      |                  |              |                                 | on drying (%                                 | -                | 3.0                                                                                                                                |                                                  |                                                              |
| ell on Sa                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               |                         |                  |              |                                 |                                              |                  |                                                                                                                                    |                                                  |                                                              |
| ell on Sa<br>isture C                                                      | ontent be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | fore (%):                                                     | 30                      | ).7              |              | 11                              | ge Moistur                                   |                  |                                                                                                                                    |                                                  |                                                              |
| ell on Sa<br>isture C<br>isture C                                          | ontent be<br>ontent aft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fore (%):<br>er (%):                                          | 30<br>32                | 2.6              |              | Est. ine                        | rt material (                                | %):              | <1%                                                                                                                                |                                                  |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C                              | ontent be<br>ontent aft<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fore (%):                                                     | 30<br>32<br>e (kPa): 56 | 2.6              |              | Est. ine<br>Crumbli             | -                                            | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C                  | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60        |              | Est. ine<br>Crumbli             | rt material (<br>ing during s                | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C                              | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60        | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s                | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C                  | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C                  | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             | · · · · · · · · · · · · · · · · · · ·                        |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             | · · · · · · · · · · · · · · · · · · ·                        |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             | · · · · · · · · · · · · · · · · · · ·                        |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag<br> | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             | · · · · · · · · · · · · · · · · · · ·                        |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre<br>c | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre<br>comp. Stre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C                  | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre<br>c | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre<br>c | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             |                                                              |
| ell on Sa<br>isture C<br>isture C<br>. Unc. C<br>. Unc. C<br><b>rink S</b> | ontent be<br>ontent aft<br>comp. Stre<br>comp. Stre<br>c | fore (%):<br>er (%):<br>ngth befor                            | 30<br>32<br>e (kPa): 56 | 2.6<br>60<br>600 | Shrinkag     | Est. iner<br>Crumbli<br>Crackin | rt material (<br>ing during s<br>g during sh | %):<br>shrinkage | <1%                                                                                                                                | rate                                             | 50.0                                                         |

## Comments



| hrin                                                                |                                                                    |                                                     |                                      |                        |           |                                            |                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
|---------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------|------------------------|-----------|--------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| lient:                                                              | PO E                                                               | oy Project N<br>Sox 2214<br>Jar NSW 2               | -                                    | ent Pty Ltd            |           |                                            | N                                                               |                                               | The results of the test<br>his document are trac<br>Results provided related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>related<br>r | ance with ISO/IEC 170<br>ts, calibrations and/or<br>ceable to Australian/na<br>te only to the items tes<br>be reproduced except i | measurements include<br>ational standards.<br>sted or sampled. |
| roject No.<br>roject Na                                             |                                                                    | 19P-0143A<br>osed Subdiv                            |                                      | e Gardens              | , Stage 2 |                                            |                                                                 | EDITATION                                     | (Senior Geotech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Laboratory Nu                                                                                                                   |                                                                |
| ample I                                                             | Details                                                            |                                                     |                                      |                        |           |                                            |                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
| ample ID:                                                           | NE                                                                 | EW20W-3923                                          | 8S14                                 |                        |           |                                            |                                                                 | Sampled by                                    | y Engineerin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng Departme                                                                                                                       | nt                                                             |
| aterial:                                                            | CL                                                                 | .AY                                                 |                                      |                        |           | Date Sar                                   | mpled:                                                          | 16/11/2020                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
| ource:                                                              | Or                                                                 | n-Site                                              |                                      |                        |           | Date Sul                                   | bmitted:                                                        | 18/11/2020                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
| pecificatio                                                         |                                                                    | Specification                                       |                                      |                        |           |                                            |                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
| •                                                                   |                                                                    | 8 - 730 Medo                                        |                                      | Medowie                |           |                                            |                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
| ample Loc<br>ate Testec                                             |                                                                    | +212 - 0.90 -<br>/11/2020                           | 1.10m                                |                        |           |                                            |                                                                 |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                   |                                                                |
| oisture Co                                                          | ontent bei<br>ontent afte                                          | ore (%):<br>er (%):                                 | 30<br>25                             | .3<br>).8<br>5.8       |           | Shrinka<br>Est. ine                        | on drying (<br>ge Moistur<br>rt material                        | e Content<br>(%):                             | <1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                |
| oisture Co<br>oisture Co<br>at. Unc. Co<br>at. Unc. Co              | ontent bef<br>ontent aft<br>omp. Stre<br>omp. Stre                 | ore (%):                                            | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       |           | Shrinka<br>Est. iner<br>Crumbli            | ge Moistur                                                      | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r                                                                                                                                 |                                                                |
| oisture Co<br>oisture Co<br>st. Unc. Co                             | ontent bef<br>ontent aft<br>omp. Stre<br>omp. Stre                 | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during                         | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 |                                                                |
| oisture Co<br>oisture Co<br>st. Unc. Co<br>st. Unc. Co              | ontent bef<br>ontent aft<br>omp. Stre<br>omp. Stre                 | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 |                                                                |
| bisture Co<br>bisture Co<br>st. Unc. Co<br>t. Unc. Co<br>hrink S    | ontent bei<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well        | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r<br>                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                          |
| bisture Co<br>bisture Co<br>st. Unc. Co<br>t. Unc. Co<br>hrink S    | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 |                                                                |
| bisture Co<br>bisture Co<br>st. Unc. Co<br>t. Unc. Co<br>hrink S    | ontent bei<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well        | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 |                                                                |
| bisture Co<br>bisture Co<br>bit. Unc. Co<br>bit. Unc. Co<br>hrink S | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                          |
| bisture Co<br>bisture Co<br>bit. Unc. Co<br>bit. Unc. Co<br>hrink S | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                          |
| bisture Co<br>bisture Co<br>bit. Unc. Co<br>bit. Unc. Co<br>hrink S | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r<br>                                                                                                                             | · · · · · · · · · · · · · · · · · · ·                          |
| bisture Co<br>bisture Co<br>bit. Unc. Co<br>bit. Unc. Co<br>hrink S | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 |                                                                |
| bisture Co<br>bisture Co<br>bit. Unc. Co<br>bit. Unc. Co<br>hrink S | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r<br>                                                                                                                             |                                                                |
| bisture Co<br>bisture Co<br>bit. Unc. Co<br>bit. Unc. Co<br>hrink S | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well         | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                          |
| Shrink (%) Esh - Swell (%) Esw                                      | ontent bei<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well        | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | Shrinkage | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s           | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 |                                                                |
| Shrink (%) Esh - Swell (%) Esw                                      | ontent bei<br>ontent aft<br>omp. Stre<br>omp. Stre<br>well<br>10.0 | Fore (%):<br>er (%):<br>ngth before<br>ngth after ( | 30<br>25<br>e (kPa): 28<br>(kPa): 25 | 0.8<br>5.8<br>30<br>50 |           | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during<br>g during s<br>Sw ell | re Content<br>(%):<br>shrinkage:<br>hrinkage: | t <b>(%):</b> 31.5<br><1%<br>P: Nil<br>Major                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   |                                                                |
| Shrink (%) Esh - Swell (%) Esw                                      | ontent bei<br>ontent afte<br>omp. Stre<br>omp. Stre<br>well        | ore (%):<br>er (%):<br>ngth before                  | 30<br>25<br><b>e (kPa):</b> 28       | ).8<br>5.8<br>30       | 20.0      | Shrinka<br>Est. iner<br>Crumbli<br>Crackin | ge Moistur<br>rt material<br>ing during s<br>Sw ell             | e Content<br>(%):<br>shrinkage                | t <b>(%):</b> 31.5<br><1%<br>e: Nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                 | 50.0                                                           |

## Comments



- 02 4968 4468
- T:
- F: E: W:
- 1:
   02 4968 4468

   F:
   02 4960 9775

   E:
   admin@qualtest.com.au

   W:
   www.qualtest.com.au

   ABN:
   98 153 268 896

#### Report No: MAT:NEW20W-3923--S01 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Results provider letale only to the items tested or sampled. This report shall not be reproduced except in full. McCloy Project Management Pty Ltd PO Box 2214 Client: Dangar NSW 2309 ΝΑΤΑ Cull B NEW19P-0143A Project No.: Approved Signatory: Brent Cullen Project Name: Proposed Subdivision - The Gardens, Stage 2 WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number: 18686 Date of Issue: 30/11/2020

## **Sample Details**

| -                 |                                   |
|-------------------|-----------------------------------|
| Sample ID:        | NEW20W-3923S01                    |
| Sampling Method:  | Sampled by Engineering Department |
| Date Sampled:     | 16/11/2020                        |
| Source:           | On-Site                           |
| Material:         | Sandy CLAY                        |
| Specification:    | No Specification                  |
| Project Location: | 688 - 730 Medowie Road, Medowie   |
| Sample Location:  | BH201 - 0.20 to 0.35m             |
|                   |                                   |

## Test Results

| Test Results         |               |            |        |
|----------------------|---------------|------------|--------|
| Description          | Method        | Result     | Limits |
| Sample History       | AS 1289.1.1   | Oven-dried |        |
| Preparation          | AS 1289.1.1   | Dry Sieved |        |
| Linear Shrinkage (%) | AS 1289.3.4.1 | 13.0       |        |
| Mould Length (mm)    |               | 250        |        |
| Crumbling            |               | No         |        |
| Curling              |               | No         |        |
| Cracking             |               | No         |        |
| Liquid Limit (%)     | AS 1289.3.1.1 | 43         |        |
| Method               |               | Four Point |        |
| Plastic Limit (%)    | AS 1289.3.2.1 | 17         |        |
| Plasticity Index (%) | AS 1289.3.3.1 | 26         |        |
| Date Tested          |               | 25/11/2020 |        |

## Comments



- 02 4968 4468
- T:
- 1:
   02 4968 4468

   F:
   02 4960 9775

   E:
   admin@qualtest.com.au

   W:
   www.qualtest.com.au

   ABN:
   98 153 268 896
   F: E: W:

#### Report No: MAT:NEW20W-3923--S15 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Results provider letale only to the items tested or sampled. This report shall not be reproduced except in full. McCloy Project Management Pty Ltd PO Box 2214 Client: Dangar NSW 2309 ΝΑΤΑ Cull B NEW19P-0143A Project No.: Approved Signatory: Brent Cullen Project Name: Proposed Subdivision - The Gardens, Stage 2 WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number: 18686 Date of Issue: 30/11/2020

## Sample Details

| Sample ID:        | NEW20W-3923S15                    |
|-------------------|-----------------------------------|
| Sampling Method:  | Sampled by Engineering Department |
| Date Sampled:     | 16/11/2020                        |
| Source:           | On-Site                           |
| Material:         | CLAY                              |
| Specification:    | No Specification                  |
| Project Location: | 688 - 730 Medowie Road, Medowie   |
| Sample Location:  | BH201 - 0.9 to 1.0m               |

## Test Results

| rest Results         |               |            |        |
|----------------------|---------------|------------|--------|
| Description          | Method        | Result     | Limits |
| Sample History       | AS 1289.1.1   | Oven-dried |        |
| Preparation          | AS 1289.1.1   | Dry Sieved |        |
| Linear Shrinkage (%) | AS 1289.3.4.1 | 15.0       |        |
| Mould Length (mm)    |               | 250        |        |
| Crumbling            |               | No         |        |
| Curling              |               | No         |        |
| Cracking             |               | Yes        |        |
| Liquid Limit (%)     | AS 1289.3.1.1 | 37         |        |
| Method               |               | Four Point |        |
| Plastic Limit (%)    | AS 1289.3.2.1 | 14         |        |
| Plasticity Index (%) | AS 1289.3.3.1 | 23         |        |
| Date Tested          |               | 25/11/2020 |        |

## Comments



- 02 4968 4468
- T:
- 1: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

#### Report No: MAT:NEW20W-3923--S02 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Results provider letale only to the items tested or sampled. This report shall not be reproduced except in full. McCloy Project Management Pty Ltd PO Box 2214 Client: Dangar NSW 2309 ΝΑΤΑ B Call NEW19P-0143A Project No.: Approved Signatory: Brent Cullen Project Name: Proposed Subdivision - The Gardens, Stage 2 WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number: 18686 Date of Issue: 30/11/2020

## **Sample Details**

| -                 |                                   |
|-------------------|-----------------------------------|
| Sample ID:        | NEW20W-3923S02                    |
| Sampling Method:  | Sampled by Engineering Department |
| Date Sampled:     | 16/11/2020                        |
| Source:           | On-Site                           |
| Material:         | CLAY                              |
| Specification:    | No Specification                  |
| Project Location: | 688 - 730 Medowie Road, Medowie   |
| Sample Location:  | BH201 - 1.00 to 1.20m             |

## Test Results

| Test Results         |               |            |        |
|----------------------|---------------|------------|--------|
| Description          | Method        | Result     | Limits |
| Sample History       | AS 1289.1.1   | Oven-dried |        |
| Preparation          | AS 1289.1.1   | Dry Sieved |        |
| Linear Shrinkage (%) | AS 1289.3.4.1 | 15.0       |        |
| Mould Length (mm)    |               | 250        |        |
| Crumbling            |               | No         |        |
| Curling              |               | No         |        |
| Cracking             |               | Yes        |        |
| Liquid Limit (%)     | AS 1289.3.1.1 | 58         |        |
| Method               |               | Four Point |        |
| Plastic Limit (%)    | AS 1289.3.2.1 | 21         |        |
| Plasticity Index (%) | AS 1289.3.3.1 | 37         |        |
| Date Tested          |               | 26/11/2020 |        |

## Comments

N/A



- 02 4968 4468
- T:
- 1: 02 4968 4468 F: 02 4960 9775 E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

#### Report No: MAT:NEW20W-3923--S06 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Results provider letale only to the items tested or sampled. This report shall not be reproduced except in full. McCloy Project Management Pty Ltd PO Box 2214 Client: Dangar NSW 2309 ΝΑΤΑ B Call NEW19P-0143A Project No.: Approved Signatory: Brent Cullen Project Name: Proposed Subdivision - The Gardens, Stage 2 WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number: 18686 Date of Issue: 30/11/2020

## **Sample Details**

| -                 |                                   |
|-------------------|-----------------------------------|
| Sample ID:        | NEW20W-3923S06                    |
| Sampling Method:  | Sampled by Engineering Department |
| Date Sampled:     | 16/11/2020                        |
| Source:           | On-Site                           |
| Material:         | Sandy CLAY                        |
| Specification:    | No Specification                  |
| Project Location: | 688 - 730 Medowie Road, Medowie   |
| Sample Location:  | BH204 - 0.50 to 0.80m             |
|                   |                                   |

## Test Results

| rest Results         |               |            |        |
|----------------------|---------------|------------|--------|
| Description          | Method        | Result     | Limits |
| Sample History       | AS 1289.1.1   | Oven-dried |        |
| Preparation          | AS 1289.1.1   | Dry Sieved |        |
| Linear Shrinkage (%) | AS 1289.3.4.1 | 12.5       |        |
| Mould Length (mm)    |               | 250        |        |
| Crumbling            |               | No         |        |
| Curling              |               | No         |        |
| Cracking             |               | No         |        |
| Liquid Limit (%)     | AS 1289.3.1.1 | 49         |        |
| Method               |               | Four Point |        |
| Plastic Limit (%)    | AS 1289.3.2.1 | 14         |        |
| Plasticity Index (%) | AS 1289.3.3.1 | 35         |        |
| Date Tested          |               | 25/11/2020 |        |

## Comments



- 02 4968 4468
- T: 02 4960 9775
- F: E: W: E: admin@qualtest.com.au W: www.qualtest.com.au ABN: 98 153 268 896

#### Report No: MAT:NEW20W-3923--S12 Issue No: 1 **Material Test Report** Accredited for compliance with ISO/IEC 17025-Testing. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. Results provider letale only to the items tested or sampled. This report shall not be reproduced except in full. McCloy Project Management Pty Ltd PO Box 2214 Client: Dangar NSW 2309 ΝΑΤΑ Cull B NEW19P-0143A Project No.: Approved Signatory: Brent Cullen Project Name: Proposed Subdivision - The Gardens, Stage 2 WORLD RECOGNISED (Senior Geotechnician) NATA Accredited Laboratory Number: 18686 Date of Issue: 30/11/2020

## **Sample Details**

| -                 |                                   |  |
|-------------------|-----------------------------------|--|
| Sample ID:        | NEW20W-3923S12                    |  |
| Sampling Method:  | Sampled by Engineering Department |  |
| Date Sampled:     | 16/11/2020                        |  |
| Source:           | On-Site                           |  |
| Material:         | CLAY                              |  |
| Specification:    | No Specification                  |  |
| Project Location: | 688 - 730 Medowie Road, Medowie   |  |
| Sample Location:  | BH210 - 0.70 to 0.90m             |  |

## Test Results

| Test Nesults         |               |            |        |
|----------------------|---------------|------------|--------|
| Description          | Method        | Result     | Limits |
| Sample History       | AS 1289.1.1   | Oven-dried |        |
| Preparation          | AS 1289.1.1   | Dry Sieved |        |
| Linear Shrinkage (%) | AS 1289.3.4.1 | 12.5       |        |
| Mould Length (mm)    |               | 250        |        |
| Crumbling            |               | No         |        |
| Curling              |               | No         |        |
| Cracking             |               | Yes        |        |
| Liquid Limit (%)     | AS 1289.3.1.1 | 56         |        |
| Method               |               | Four Point |        |
| Plastic Limit (%)    | AS 1289.3.2.1 | 28         |        |
| Plasticity Index (%) | AS 1289.3.3.1 | 28         |        |
| Date Tested          |               | 26/11/2020 |        |

## Comments

## **APPENDIX C:**

## **CSIRO** Sheet BTF 18

Foundation Maintenance and Footing Performance: A Homeowner's Guide

# Foundation Maintenance and Footing Performance: A Homeowner's Guide



BTF 18 replaces Information Sheet 10/91

Buildings can and often do move. This movement can be up, down, lateral or rotational. The fundamental cause of movement in buildings can usually be related to one or more problems in the foundation soil. It is important for the homeowner to identify the soil type in order to ascertain the measures that should be put in place in order to ensure that problems in the foundation soil can be prevented, thus protecting against building movement.

This Building Technology File is designed to identify causes of soil-related building movement, and to suggest methods of prevention of resultant cracking in buildings.

### Soil Types

The types of soils usually present under the topsoil in land zoned for residential buildings can be split into two approximate groups – granular and clay. Quite often, foundation soil is a mixture of both types. The general problems associated with soils having granular content are usually caused by erosion. Clay soils are subject to saturation and swell/shrink problems.

Classifications for a given area can generally be obtained by application to the local authority, but these are sometimes unreliable and if there is doubt, a geotechnical report should be commissioned. As most buildings suffering movement problems are founded on clay soils, there is an emphasis on classification of soils according to the amount of swell and shrinkage they experience with variations of water content. The table below is Table 2.1 from AS 2870, the Residential Slab and Footing Code.

## **Causes of Movement**

#### Settlement due to construction

There are two types of settlement that occur as a result of construction:

- Immediate settlement occurs when a building is first placed on its foundation soil, as a result of compaction of the soil under the weight of the structure. The cohesive quality of clay soil mitigates against this, but granular (particularly sandy) soil is susceptible.
- Consolidation settlement is a feature of clay soil and may take place because of the expulsion of moisture from the soil or because of the soil's lack of resistance to local compressive or shear stresses. This will usually take place during the first few months after construction, but has been known to take many years in exceptional cases.

These problems are the province of the builder and should be taken into consideration as part of the preparation of the site for construction. Building Technology File 19 (BTF 19) deals with these problems.

#### Erosion

All soils are prone to erosion, but sandy soil is particularly susceptible to being washed away. Even clay with a sand component of say 10% or more can suffer from erosion.

#### Saturation

This is particularly a problem in clay soils. Saturation creates a boglike suspension of the soil that causes it to lose virtually all of its bearing capacity. To a lesser degree, sand is affected by saturation because saturated sand may undergo a reduction in volume – particularly imported sand fill for bedding and blinding layers. However, this usually occurs as immediate settlement and should normally be the province of the builder.

#### Seasonal swelling and shrinkage of soil

All clays react to the presence of water by slowly absorbing it, making the soil increase in volume (see table below). The degree of increase varies considerably between different clays, as does the degree of decrease during the subsequent drying out caused by fair weather periods. Because of the low absorption and expulsion rate, this phenomenon will not usually be noticeable unless there are prolonged rainy or dry periods, usually of weeks or months, depending on the land and soil characteristics.

The swelling of soil creates an upward force on the footings of the building, and shrinkage creates subsidence that takes away the support needed by the footing to retain equilibrium.

#### Shear failure

This phenomenon occurs when the foundation soil does not have sufficient strength to support the weight of the footing. There are two major post-construction causes:

- Significant load increase.
- Reduction of lateral support of the soil under the footing due to erosion or excavation.
- In clay soil, shear failure can be caused by saturation of the soil adjacent to or under the footing.

| GENERAL DEFINITIONS OF SITE CLASSES |                                                                                                                                                                                                                                                       |  |  |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Class                               | Foundation                                                                                                                                                                                                                                            |  |  |
| А                                   | Most sand and rock sites with little or no ground movement from moisture changes                                                                                                                                                                      |  |  |
| S                                   | Slightly reactive clay sites with only slight ground movement from moisture changes                                                                                                                                                                   |  |  |
| М                                   | Moderately reactive clay or silt sites, which can experience moderate ground movement from moisture changes                                                                                                                                           |  |  |
| Н                                   | Highly reactive clay sites, which can experience high ground movement from moisture changes                                                                                                                                                           |  |  |
| Е                                   | Extremely reactive sites, which can experience extreme ground movement from moisture changes                                                                                                                                                          |  |  |
| A to P                              | Filled sites                                                                                                                                                                                                                                          |  |  |
| Р                                   | Sites which include soft soils, such as soft clay or silt or loose sands; landslip; mine subsidence; collapsing soils; soils subject to erosion; reactive sites subject to abnormal moisture conditions or sites which cannot be classified otherwise |  |  |

#### Tree root growth

Trees and shrubs that are allowed to grow in the vicinity of footings can cause foundation soil movement in two ways:

- · Roots that grow under footings may increase in cross-sectional size, exerting upward pressure on footings.
- Roots in the vicinity of footings will absorb much of the moisture in the foundation soil, causing shrinkage or subsidence.

#### **Unevenness of Movement**

The types of ground movement described above usually occur unevenly throughout the building's foundation soil. Settlement due to construction tends to be uneven because of:

- Differing compaction of foundation soil prior to construction.
- · Differing moisture content of foundation soil prior to construction.

Movement due to non-construction causes is usually more uneven still. Erosion can undermine a footing that traverses the flow or can create the conditions for shear failure by eroding soil adjacent to a footing that runs in the same direction as the flow.

Saturation of clay foundation soil may occur where subfloor walls create a dam that makes water pond. It can also occur wherever there is a source of water near footings in clay soil. This leads to a severe reduction in the strength of the soil which may create local shear failure

Seasonal swelling and shrinkage of clay soil affects the perimeter of the building first, then gradually spreads to the interior. The swelling process will usually begin at the uphill extreme of the building, or on the weather side where the land is flat. Swelling gradually reaches the interior soil as absorption continues. Shrinkage usually begins where the sun's heat is greatest.

## Effects of Uneven Soil Movement on Structures

#### **Erosion and saturation**

Erosion removes the support from under footings, tending to create subsidence of the part of the structure under which it occurs. Brickwork walls will resist the stress created by this removal of support by bridging the gap or cantilevering until the bricks or the mortar bedding fail. Older masonry has little resistance. Evidence of failure varies according to circumstances and symptoms may include:

- Step cracking in the mortar beds in the body of the wall or above/below openings such as doors or windows.
- Vertical cracking in the bricks (usually but not necessarily in line with the vertical beds or perpends).

Isolated piers affected by erosion or saturation of foundations will eventually lose contact with the bearers they support and may tilt or fall over. The floors that have lost this support will become bouncy, sometimes rattling ornaments etc.

#### Seasonal swelling/shrinkage in clay

Swelling foundation soil due to rainy periods first lifts the most exposed extremities of the footing system, then the remainder of the perimeter footings while gradually permeating inside the building footprint to lift internal footings. This swelling first tends to create a dish effect, because the external footings are pushed higher than the internal ones.

The first noticeable symptom may be that the floor appears slightly dished. This is often accompanied by some doors binding on the floor or the door head, together with some cracking of cornice mitres. In buildings with timber flooring supported by bearers and joists, the floor can be bouncy. Externally there may be visible dishing of the hip or ridge lines.

As the moisture absorption process completes its journey to the innermost areas of the building, the internal footings will rise. If the spread of moisture is roughly even, it may be that the symptoms will temporarily disappear, but it is more likely that swelling will be uneven, creating a difference rather than a disappearance in symptoms. In buildings with timber flooring supported by bearers and joists, the isolated piers will rise more easily than the strip footings or piers under walls, creating noticeable doming of flooring.



As the weather pattern changes and the soil begins to dry out, the external footings will be first affected, beginning with the locations where the sun's effect is strongest. This has the effect of lowering the external footings. The doming is accentuated and cracking reduces or disappears where it occurred because of dishing, but other cracks open up. The roof lines may become convex.

Doming and dishing are also affected by weather in other ways. In areas where warm, wet summers and cooler dry winters prevail, water migration tends to be toward the interior and doming will be accentuated, whereas where summers are dry and winters are cold and wet, migration tends to be toward the exterior and the underlying propensity is toward dishing.

#### Movement caused by tree roots

In general, growing roots will exert an upward pressure on footings, whereas soil subject to drying because of tree or shrub roots will tend to remove support from under footings by inducing shrinkage.

#### Complications caused by the structure itself

Most forces that the soil causes to be exerted on structures are vertical - i.e. either up or down. However, because these forces are seldom spread evenly around the footings, and because the building resists uneven movement because of its rigidity, forces are exerted from one part of the building to another. The net result of all these forces is usually rotational. This resultant force often complicates the diagnosis because the visible symptoms do not simply reflect the original cause. A common symptom is binding of doors on the vertical member of the frame.

#### Effects on full masonry structures

Brickwork will resist cracking where it can. It will attempt to span areas that lose support because of subsided foundations or raised points. It is therefore usual to see cracking at weak points, such as openings for windows or doors.

In the event of construction settlement, cracking will usually remain unchanged after the process of settlement has ceased.

With local shear or erosion, cracking will usually continue to develop until the original cause has been remedied, or until the subsidence has completely neutralised the affected portion of footing and the structure has stabilised on other footings that remain effective.

In the case of swell/shrink effects, the brickwork will in some cases return to its original position after completion of a cycle, however it is more likely that the rotational effect will not be exactly reversed, and it is also usual that brickwork will settle in its new position and will resist the forces trying to return it to its original position. This means that in a case where swelling takes place after construction and cracking occurs, the cracking is likely to at least partly remain after the shrink segment of the cycle is complete. Thus, each time the cycle is repeated, the likelihood is that the cracking will become wider until the sections of brickwork become virtually independent.

With repeated cycles, once the cracking is established, if there is no other complication, it is normal for the incidence of cracking to stabilise, as the building has the articulation it needs to cope with the problem. This is by no means always the case, however, and monitoring of cracks in walls and floors should always be treated seriously.

Upheaval caused by growth of tree roots under footings is not a simple vertical shear stress. There is a tendency for the root to also exert lateral forces that attempt to separate sections of brickwork after initial cracking has occurred.

#### Trees can cause shrinkage and damage

The normal structural arrangement is that the inner leaf of brickwork in the external walls and at least some of the internal walls (depending on the roof type) comprise the load-bearing structure on which any upper floors, ceilings and the roof are supported. In these cases, it is internally visible cracking that should be the main focus of attention, however there are a few examples of dwellings whose external leaf of masonry plays some supporting role, so this should be checked if there is any doubt. In any case, externally visible cracking is important as a guide to stresses on the structure generally, and it should also be remembered that the external walls must be capable of supporting themselves.

## Effects on framed structures

Timber or steel framed buildings are less likely to exhibit cracking due to swell/shrink than masonry buildings because of their flexibility. Also, the doming/dishing effects tend to be lower because of the lighter weight of walls. The main risks to framed buildings are encountered because of the isolated pier footings used under walls. Where erosion or saturation cause a footing to fall away, this can double the span which a wall must bridge. This additional stress can create cracking in wall linings, particularly where there is a weak point in the structure caused by a door or window opening. It is, however, unlikely that framed structures will be so stressed as to suffer serious damage without first exhibiting some or all of the above symptoms for a considerable period. The same warning period should apply in the case of upheaval. It should be noted, however, that where framed buildings are supported by strip footings there is only one leaf of brickwork and therefore the externally visible walls are the supporting structure for the building. In this case, the subfloor masonry walls can be expected to behave as full brickwork walls.

#### Effects on brick veneer structures

Because the load-bearing structure of a brick veneer building is the frame that makes up the interior leaf of the external walls plus perhaps the internal walls, depending on the type of roof, the building can be expected to behave as a framed structure, except that the external masonry will behave in a similar way to the external leaf of a full masonry structure.

## Water Service and Drainage

Where a water service pipe, a sewer or stormwater drainage pipe is in the vicinity of a building, a water leak can cause erosion, swelling or saturation of susceptible soil. Even a minuscule leak can be enough to saturate a clay foundation. A leaking tap near a building can have the same effect. In addition, trenches containing pipes can become watercourses even though backfilled, particularly where broken rubble is used as fill. Water that runs along these trenches can be responsible for serious erosion, interstrata seepage into subfloor areas and saturation.

Pipe leakage and trench water flows also encourage tree and shrub roots to the source of water, complicating and exacerbating the problem.

Poor roof plumbing can result in large volumes of rainwater being concentrated in a small area of soil:

 Incorrect falls in roof guttering may result in overflows, as may gutters blocked with leaves etc.

- Corroded guttering or downpipes can spill water to ground.
- Downpipes not positively connected to a proper stormwater collection system will direct a concentration of water to soil that is directly adjacent to footings, sometimes causing large-scale problems such as erosion, saturation and migration of water under the building.

### Seriousness of Cracking

In general, most cracking found in masonry walls is a cosmetic nuisance only and can be kept in repair or even ignored. The table below is a reproduction of Table C1 of AS 2870.

AS 2870 also publishes figures relating to cracking in concrete floors, however because wall cracking will usually reach the critical point significantly earlier than cracking in slabs, this table is not reproduced here.

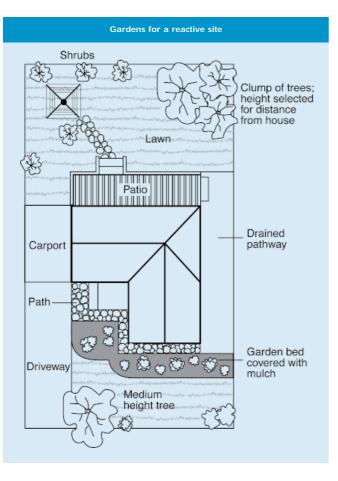
#### Prevention/Cure

#### Plumbing

Where building movement is caused by water service, roof plumbing, sewer or stormwater failure, the remedy is to repair the problem. It is prudent, however, to consider also rerouting pipes away from the building where possible, and relocating taps to positions where any leakage will not direct water to the building vicinity. Even where gully traps are present, there is sometimes sufficient spill to create erosion or saturation, particularly in modern installations using smaller diameter PVC fixtures. Indeed, some gully traps are not situated directly under the taps that are installed to charge them, with the result that water from the tap may enter the backfilled trench that houses the sewer piping. If the trench has been poorly backfilled, the water will either pond or flow along the bottom of the trench. As these trenches usually run alongside the footings and can be at a similar depth, it is not hard to see how any water that is thus directed into a trench can easily affect the foundation's ability to support footings or even gain entry to the subfloor area.

#### Ground drainage

In all soils there is the capacity for water to travel on the surface and below it. Surface water flows can be established by inspection during and after heavy or prolonged rain. If necessary, a grated drain system connected to the stormwater collection system is usually an easy solution.


It is, however, sometimes necessary when attempting to prevent water migration that testing be carried out to establish watertable height and subsoil water flows. This subject is referred to in BTF 19 and may properly be regarded as an area for an expert consultant.

## Protection of the building perimeter

It is essential to remember that the soil that affects footings extends well beyond the actual building line. Watering of garden plants, shrubs and trees causes some of the most serious water problems.

For this reason, particularly where problems exist or are likely to occur, it is recommended that an apron of paving be installed around as much of the building perimeter as necessary. This paving

| CLASSIFICATION OF DAMAGE WITH REFERENCE TO WALLS                                                                                                                                                                                        |                                                              |                    |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|--|--|--|
| Description of typical damage and required repair                                                                                                                                                                                       | Approximate crack width<br>limit (see Note 3)                | Damage<br>category |  |  |  |
| Hairline cracks                                                                                                                                                                                                                         | <0.1 mm                                                      | 0                  |  |  |  |
| Fine cracks which do not need repair                                                                                                                                                                                                    | <1 mm                                                        | 1                  |  |  |  |
| Cracks noticeable but easily filled. Doors and windows stick slightly                                                                                                                                                                   | <5 mm                                                        | 2                  |  |  |  |
| Cracks can be repaired and possibly a small amount of wall will need<br>to be replaced. Doors and windows stick. Service pipes can fracture.<br>Weathertightness often impaired                                                         | 5–15 mm (or a number of cracks<br>3 mm or more in one group) | 3                  |  |  |  |
| Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Window and door frames distort. Walls lean or bulge noticeably, some loss of bearing in beams. Service pipes disrupted | 15–25 mm but also depend<br>on number of cracks              | 4                  |  |  |  |



should extend outwards a minimum of 900 mm (more in highly reactive soil) and should have a minimum fall away from the building of 1:60. The finished paving should be no less than 100 mm below brick vent bases.

It is prudent to relocate drainage pipes away from this paving, if possible, to avoid complications from future leakage. If this is not practical, earthenware pipes should be replaced by PVC and backfilling should be of the same soil type as the surrounding soil and compacted to the same density.

Except in areas where freezing of water is an issue, it is wise to remove taps in the building area and relocate them well away from the building – preferably not uphill from it (see BTF 19).

It may be desirable to install a grated drain at the outside edge of the paving on the uphill side of the building. If subsoil drainage is needed this can be installed under the surface drain.

#### Condensation

In buildings with a subfloor void such as where bearers and joists support flooring, insufficient ventilation creates ideal conditions for condensation, particularly where there is little clearance between the floor and the ground. Condensation adds to the moisture already present in the subfloor and significantly slows the process of drying out. Installation of an adequate subfloor ventilation system, either natural or mechanical, is desirable.

*Warning:* Although this Building Technology File deals with cracking in buildings, it should be said that subfloor moisture can result in the development of other problems, notably:

- Water that is transmitted into masonry, metal or timber building elements causes damage and/or decay to those elements.
- High subfloor humidity and moisture content create an ideal environment for various pests, including termites and spiders.
- Where high moisture levels are transmitted to the flooring and walls, an increase in the dust mite count can ensue within the living areas. Dust mites, as well as dampness in general, can be a health hazard to inhabitants, particularly those who are abnormally susceptible to respiratory ailments.

#### The garden

The ideal vegetation layout is to have lawn or plants that require only light watering immediately adjacent to the drainage or paving edge, then more demanding plants, shrubs and trees spread out in that order.

Overwatering due to misuse of automatic watering systems is a common cause of saturation and water migration under footings. If it is necessary to use these systems, it is important to remove garden beds to a completely safe distance from buildings.

#### **Existing trees**

Where a tree is causing a problem of soil drying or there is the existence or threat of upheaval of footings, if the offending roots are subsidiary and their removal will not significantly damage the tree, they should be severed and a concrete or metal barrier placed vertically in the soil to prevent future root growth in the direction of the building. If it is not possible to remove the relevant roots without damage to the tree, an application to remove the tree should be made to the local authority. A prudent plan is to transplant likely offenders before they become a problem.

#### Information on trees, plants and shrubs

State departments overseeing agriculture can give information regarding root patterns, volume of water needed and safe distance from buildings of most species. Botanic gardens are also sources of information. For information on plant roots and drains, see Building Technology File 17.

#### Excavation

Excavation around footings must be properly engineered. Soil supporting footings can only be safely excavated at an angle that allows the soil under the footing to remain stable. This angle is called the angle of repose (or friction) and varies significantly between soil types and conditions. Removal of soil within the angle of repose will cause subsidence.

#### Remediation

Where erosion has occurred that has washed away soil adjacent to footings, soil of the same classification should be introduced and compacted to the same density. Where footings have been undermined, augmentation or other specialist work may be required. Remediation of footings and foundations is generally the realm of a specialist consultant.

Where isolated footings rise and fall because of swell/shrink effect, the homeowner may be tempted to alleviate floor bounce by filling the gap that has appeared between the bearer and the pier with blocking. The danger here is that when the next swell segment of the cycle occurs, the extra blocking will push the floor up into an accentuated dome and may also cause local shear failure in the soil. If it is necessary to use blocking, it should be by a pair of fine wedges and monitoring should be carried out fortnightly.

This BTF was prepared by John Lewer FAIB, MIAMA, Partner, Construction Diagnosis.

The information in this and other issues in the series was derived from various sources and was believed to be correct when published.

The information is advisory. It is provided in good faith and not claimed to be an exhaustive treatment of the relevant subject.

Further professional advice needs to be obtained before taking any action based on the information provided.

Distributed by

CSIRO PUBLISHING PO Box 1139, Collingwood 3066, Australia Freecall 1800 645 051 Tel (03) 9662 7666 Fax (03) 9662 7555 www.publish.csiro.au Email: publishing.sales@csiro.au

© CSIRO 2003. Unauthorised copying of this Building Technology file is prohibited